Source Code
Overview
POL Balance
More Info
ContractCreator
Multichain Info
N/A
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
13055241 | 124 days ago | Contract Creation | 0 POL |
Loading...
Loading
Contract Name:
MarketMaker
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 600 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import { IERC165Upgradeable } from "@openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol"; import { IERC1155ReceiverUpgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC1155/IERC1155ReceiverUpgradeable.sol"; import { ERC1155ReceiverUpgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC1155/utils/ERC1155ReceiverUpgradeable.sol"; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { IConditionalTokensV1_2, ConditionID, ConditionalTokensErrors, CTHelpers } from "../conditions/IConditionalTokensV1_2.sol"; import { FundingPool, IFundingPoolV1_1, IFundingPoolV1 } from "../funding/FundingPool.sol"; import { ChildFundingPool, IChildFundingPoolV1, IParentFundingPoolV1 } from "../funding/ChildFundingPool.sol"; import { FeeDistributor, FeeProfileID } from "../funding/FeeDistributor.sol"; import { IMarketMakerV1 } from "./IMarketMaker.sol"; import { IMarketMakerV1_2 } from "./IMarketMakerV1_2.sol"; import { AmmMath } from "./AmmMath.sol"; import { MarketAddressParams } from "./MarketAddressParams.sol"; import { FundingMath } from "../funding/FundingMath.sol"; import { ClampedMath, ArrayMath } from "../Math.sol"; /// @title A contract for providing a market for users to bet on /// @notice A Market for buying, selling bets as a bettor, and adding/removing /// liquidity as a liquidity provider. Any fees acrued due to trading activity /// is then given to the liquidity providers. /// @dev This is using upgradeable contracts because it will be called through a /// proxy. We will not actually be upgrading the proxy, but using proxies for /// cloning. As such, storage compatibilities between upgrades don't matter for /// the Market. contract MarketMaker is Initializable, ERC1155ReceiverUpgradeable, IMarketMakerV1_2, ChildFundingPool, FundingPool, ConditionalTokensErrors { using ArrayMath for uint256[]; using Math for uint256; using ClampedMath for uint256; using SafeERC20 for IERC20Metadata; struct InitParams { ConditionID conditionId; uint256 fee; } uint256 private constant PRECISION_DECIMALS = AmmMath.PRECISION_DECIMALS; uint256 public constant ONE_DECIMAL = AmmMath.ONE_DECIMAL; /// @dev Explicitly ok with immutable state variable as that is set in stone /// in the code deployed, rather than in the storage of every instance of /// the proxy. We are not doing upgrades, so should be ok. /// @custom:oz-upgrades-unsafe-allow state-variable-immutable FeeDistributor private immutable FEE_DISTRIBUTOR; IConditionalTokensV1_2 public conditionalTokens; ConditionID public conditionId; // All decimal values are < 1e18, which can fit in uint64, so can be packed more tightly uint64 public feeDecimal; uint64 public minInvestment; /// @dev Keep track of fees retained by each fee profile. Note that since /// not all profile ids may be approved, any fees for unapproved fee /// profiles just end up given back to the parent pool mapping(FeeProfileID => uint256) private feesByProfile; /// @custom:oz-upgrades-unsafe-allow constructor constructor(FeeDistributor feeDistributor) { // immutable fields get baked into the code, and not storage, so need to // pass these in constructor, not initializer. FEE_DISTRIBUTOR = feeDistributor; _disableInitializers(); } function initialize(MarketAddressParams calldata addresses, InitParams calldata params) public initializer { // Cannot create a market without a parent, because individual funders are forbidden if (addresses.parentPool == address(0x0)) revert NotAParentPool(addresses.parentPool); __ChildFundingPool_init(addresses.parentPool); __FundingPool_init(addresses.collateralToken); __ERC1155Receiver_init(); conditionalTokens = addresses.conditionalTokens; conditionId = params.conditionId; if (isHalted()) revert MarketHalted(); // Check collateral decimals are not too big uint256 collateralDecimals = collateralToken.decimals(); uint256 oneCollateral = 10 ** collateralDecimals; if (oneCollateral >= type(uint64).max) revert ExcessiveCollateralDecimals(); // Check if fee makes sense. It has to be < 1.0 if (params.fee >= oneCollateral) revert InvalidFee(); // Calculate numeric values on the stack and write them out at once after uint256 minInvestment_; if (params.fee > 0) { // Set the minInvestment such that fee will always be non-zero minInvestment_ = oneCollateral.ceilDiv(params.fee); assert(minInvestment_ * params.fee > 0); } else { // if no fee, investment needs to be non-zero minInvestment_ = 1; } // Assert that precision decimals are not excessive. // This is not a requirement, but an assertion because it's a code constant assert(10 ** PRECISION_DECIMALS <= type(uint64).max); // Fee is given in terms of token decimals, but in calculations we use 1 ether precision // We need to normalize the fee to our calculation precision. // Given the above checks, the result should fit within uint64, since it is at most 10 ** PRECISION_DECIMALS uint256 feeDecimal_; if (collateralDecimals < PRECISION_DECIMALS) { feeDecimal_ = params.fee * (10 ** (PRECISION_DECIMALS - collateralDecimals)); } else if (collateralDecimals > PRECISION_DECIMALS) { feeDecimal_ = params.fee / (10 ** (collateralDecimals - PRECISION_DECIMALS)); } else { feeDecimal_ = params.fee; } // Write out adjacent values all at once to take advantage of packing and reducing SSTORE calls feeDecimal = uint64(feeDecimal_); minInvestment = uint64(minInvestment_); { // Ensure they are all stored in the same slot uint256 feeSlot; uint256 minInvestmentSlot; assembly { feeSlot := feeDecimal.slot minInvestmentSlot := minInvestment.slot } assert(feeSlot == minInvestmentSlot); } } /// @inheritdoc IFundingPoolV1 // solhint-disable-next-line ordering function addFunding(uint256 collateralAdded) external returns (uint256 sharesMinted) { return addFundingFor(_msgSender(), collateralAdded); } /// @notice Removes market funds of someone if the condition is resolved. /// All conditional tokens that were part of the position are redeemed and /// only collateral is returned /// @param ownerAndReceiver Address where the collateral will be deposited, /// and who owns the LP tokens /// @param sharesToBurn portion of LP pool to remove function removeCollateralFundingOf(address ownerAndReceiver, uint256 sharesToBurn) public returns (uint256[] memory sendAmounts, uint256 collateralRemoved) { if (!conditionalTokens.isResolved(conditionId)) revert MarketUndecided(); // Fees are distributed first, unless there is a refund, in which case // all the fee collateral will get transferred back to the parent by the // code below (FeeProfileID[] memory profileIds, uint256[] memory profileAmounts, uint256 totalFeeDistributionAmount) = _calcDistributeFees(); // Make any collateral that will not go to the fee distributor part of reserves _unlockFees(collectedFees - totalFeeDistributionAmount); // Remove from reserves (collateralRemoved, sendAmounts) = _calcRemoveFunding(sharesToBurn); _burnSharesOf(ownerAndReceiver, sharesToBurn); uint256 outcomeSlotCount = sendAmounts.length; assert(outcomeSlotCount > 0); uint256[] memory indices = new uint256[](outcomeSlotCount); for (uint256 i = 0; i < outcomeSlotCount; i++) { indices[i] = i; } if (collateralRemoved > 0) { collateralToken.safeTransfer(ownerAndReceiver, collateralRemoved); } collateralRemoved += conditionalTokens.redeemPositionsFor(ownerAndReceiver, collateralToken, conditionId, indices, sendAmounts); _distributeFees(profileIds, profileAmounts, totalFeeDistributionAmount); address parent = getParentPool(); if (ownerAndReceiver == parent) { IParentFundingPoolV1(parent).fundingReturned(collateralRemoved, sharesToBurn); } uint256[] memory noTokens = new uint256[](0); emit FundingRemoved(ownerAndReceiver, collateralRemoved, noTokens, sharesToBurn); } /// @notice Removes all the collateral for funders. Anyone can call /// this function after the condition is resolved. /// @return totalSharesBurnt Total amount of shares that were burnt. /// @return totalCollateralRemoved Total amount of collateral removed. function removeAllCollateralFunding(address[] calldata funders) external returns (uint256 totalSharesBurnt, uint256 totalCollateralRemoved) { for (uint256 i = 0; i < funders.length; i++) { address funder = funders[i]; uint256 sharesToBurn_ = balanceOf(funder); if (sharesToBurn_ == 0) continue; (, uint256 collateralRemoved_) = removeCollateralFundingOf(funder, sharesToBurn_); totalCollateralRemoved += collateralRemoved_; totalSharesBurnt += sharesToBurn_; } } /// @notice Removes funds from the market by burning the shares and sending /// to the transaction sender his portion of conditional tokens and collateral. /// @param sharesToBurn portion of LP pool to remove /// @return collateral how much collateral was returned /// @return sendAmounts how much of each conditional token was returned function removeFunding(uint256 sharesToBurn) external returns (uint256 collateral, uint256[] memory sendAmounts) { address funder = _msgSender(); return _removeFunding(funder, sharesToBurn); } function _removeFunding(address funder, uint256 sharesToBurn) private returns (uint256 collateral, uint256[] memory sendAmounts) { (collateral, sendAmounts) = _calcRemoveFunding(sharesToBurn); _burnSharesOf(funder, sharesToBurn); collateralToken.safeTransfer(funder, collateral); uint256 outcomeSlotCount = sendAmounts.length; conditionalTokens.safeBatchTransferFrom( address(this), funder, CTHelpers.getPositionIds(collateralToken, conditionId, outcomeSlotCount), sendAmounts, "" ); address parent = getParentPool(); if (funder == parent) { IParentFundingPoolV1(parent).fundingReturned(collateral, sharesToBurn); } emit FundingRemoved(funder, collateral, sendAmounts, sharesToBurn); } function _calcRemoveFunding(uint256 sharesToBurn) private view returns (uint256 collateral, uint256[] memory returnAmounts) { uint256 totalShares = totalSupply(); collateral = FundingMath.calcReturnAmount(sharesToBurn, totalShares, reserves()); returnAmounts = FundingMath.calcReturnAmounts(sharesToBurn, totalShares, getPoolBalances()); } function _afterTokenTransfer(address from, address to, uint256 amount) internal override { // When address other than parent gets shares, immediately eject them to // maintain invariant that all funding is by parent if (from == getParentPool() && to != address(0x0)) { _removeFunding(to, amount); } } /// @notice Buys an amount of a conditional token position. /// @param investmentAmount Amount of collateral to exchange for the collateral tokens. /// @param outcomeIndex Position index of the condition to buy. /// @param minOutcomeTokensToBuy Minimal amount of conditional token expected to be received. function buy(uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy) external returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices) { return buyFor(_msgSender(), investmentAmount, outcomeIndex, minOutcomeTokensToBuy, 0, FeeProfileID.wrap(0x0)); } /// @notice Sells an amount of conditional tokens and get collateral as a /// return. Currently not supported and will be implemented soon. function sell(uint256 returnAmount, uint256, /* outcomeIndex */ uint256 /* maxOutcomeTokensToSell */ ) external view returns (uint256) { if (isHalted()) revert MarketHalted(); if (returnAmount == 0) revert InvalidReturnAmount(); revert OperationNotSupported(); } /// @notice Price updates have moved to Conditional Tokens. function updateFairPrices(uint256[] calldata /* fairPriceDecimals */ ) external pure { revert OperationNotSupported(); } /// @notice Deprecated because refund outcome always has price of 0 function updateMinPrice(uint128 /* _minPriceDecimal */ ) external pure { revert OperationNotSupported(); } /// @notice Return the current fair prices used by the market, normalized to ONE_DECIMAL function getFairPrices() external view returns (uint256[] memory) { return conditionalTokens.getFairPrices(conditionId); } /// @notice Return the current prices that include the spread due to the AMM /// algorithm. The prices will sum to more than ONE_DECIMAL, because there /// is a spread incorporated into the price function getSpontaneousPrices() external view returns (uint256[] memory) { (AmmMath.TargetContext memory targetContext, uint256[] memory fairPriceDecimals) = getTargetBalance(); return AmmMath.calcSpontaneousPricesV3( targetContext.target, targetContext.globalReserves, targetContext.balances, fairPriceDecimals ); } function getPoolValue() public view returns (uint256) { (uint256[] memory poolBalances, uint256[] memory fairPriceDecimals) = conditionalTokens.getPositionInfo(address(this), collateralToken, conditionId); return AmmMath.calcPoolValue(poolBalances, fairPriceDecimals, reserves()); } /// @inheritdoc IFundingPoolV1 function addFundingFor(address receiver, uint256 collateralAdded) public returns (uint256 sharesMinted) { if (isHalted()) revert MarketHalted(); if (receiver != getParentPool()) revert CanOnlyBeFundedByParent(); sharesMinted = _mintSharesFor(receiver, collateralAdded, getPoolValue()); // Don't split through all conditions, keep collateral as collateral, until we actually need it } /// @notice Buys conditional tokens for a particular account. /// @dev This function is to buy conditional tokens by a third party on behalf of a particular account. /// @param outcomeIndex Position index of the condition to buy. /// @param minOutcomeTokensToBuy Minimal amount of conditional token expected to be received. /// @return outcomeTokensBought quantity of conditional tokens that were bought /// @return feeAmount how much collateral went to fees function buyFor(address receiver, uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy) external returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices) { return buyFor(receiver, investmentAmount, outcomeIndex, minOutcomeTokensToBuy, 0, FeeProfileID.wrap(0x0)); } function buyFor( address receiver, uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy, uint256 extraFeeDecimal, FeeProfileID feeProfileId ) public returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices) { if (isHalted()) revert MarketHalted(); if (investmentAmount < minInvestment) revert InvalidInvestmentAmount(); uint256 tokensToMint; uint256 refundIndex; AmmMath.ParentOperations memory parentOps; { (AmmMath.TargetContext memory targetContext, uint256[] memory fairPriceDecimals) = getTargetBalance(); refundIndex = AmmMath.getRefundIndex(targetContext); (outcomeTokensBought, tokensToMint, feeAmount, spontaneousPrices, parentOps) = _calcBuyAmount(investmentAmount, outcomeIndex, extraFeeDecimal, targetContext, fairPriceDecimals); } if (outcomeTokensBought < minOutcomeTokensToBuy) revert MinimumBuyAmountNotReached(); // Request from parent first, before receiving any collateral from the // buyer, otherwise the extra collateral from the buyer skews the pool // value. This skew is wrong because that extra collateral will be used // to mint conditional tokens and be given away. _applyParentRequest(parentOps); collateralToken.safeTransferFrom(_msgSender(), address(this), investmentAmount); // Should set aside the fee collateral. In case of a refund outcome, all of the fee // goes back to LP because LP provided the collateral for the refund in // the first place _retainFees(feeAmount, feeProfileId); if (tokensToMint > 0) { // We need to mint some tokens splitPositionThroughAllConditions(tokensToMint); } conditionalTokens.safeTransferFrom(address(this), receiver, positionId(outcomeIndex), outcomeTokensBought, ""); // Last index outcome is the refund outcome. Give back the same amount of tokens as collateral invested, including fees conditionalTokens.safeTransferFrom(address(this), receiver, positionId(refundIndex), investmentAmount, ""); // Return collateral back to parent once everything is settled with the buyer _applyParentReturn(parentOps); emit MarketBuy(receiver, investmentAmount, feeAmount, outcomeIndex, outcomeTokensBought); emit MarketSpontaneousPrices(spontaneousPrices); } /// @inheritdoc IERC1155ReceiverUpgradeable function onERC1155Received( address operator, address, /* from */ uint256, /* id */ uint256, /* value */ bytes memory /* data */ ) public view override returns (bytes4) { // receives conditional tokens for the liquidity pool, // or transfer from a user for purpose of selling that token if (operator == address(this) && _msgSender() == address(conditionalTokens)) { return this.onERC1155Received.selector; } return 0x0; } /// @inheritdoc IERC1155ReceiverUpgradeable function onERC1155BatchReceived( address operator, address from, uint256[] memory, /* ids */ uint256[] memory, /* values */ bytes memory /* data */ ) public view override returns (bytes4) { // receives conditional tokens for the liquidity pool from splitPositions if (operator == address(this) && from == address(0) && _msgSender() == address(conditionalTokens)) { return this.onERC1155BatchReceived.selector; } return 0x0; } /// @dev Convenience view function to calculate a positionId (ERC1155 id) for an outcome function positionId(uint256 outcomeIndex) public view returns (uint256) { return CTHelpers.getPositionId(collateralToken, CTHelpers.getCollectionId(conditionId, outcomeIndex)); } /// @notice Calculate the amount of conditional token to be bought with a certain amount of collateral. /// @param investmentAmount Amount of collateral token invested. /// @param indexOut Position index of the condition. /// @return outcomeTokensBought how many outcome tokens would the user receive from the transaction function calcBuyAmount(uint256 investmentAmount, uint256 indexOut) external view returns (uint256, uint256, uint256[] memory) { return calcBuyAmount(investmentAmount, indexOut, 0); } function calcBuyAmount(uint256 investmentAmount, uint256 indexOut, uint256 extraFeeDecimal) public view returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices) { (AmmMath.TargetContext memory targetContext, uint256[] memory fairPriceDecimals) = getTargetBalance(); (outcomeTokensBought,, feeAmount, spontaneousPrices,) = _calcBuyAmount(investmentAmount, indexOut, extraFeeDecimal, targetContext, fairPriceDecimals); } /// @dev Calculate the amount of a conditional token to be bought with a /// certain amount of collateral. This private function also provides a lot /// of other information on how to deal with an external parent pool. /// /// Some invariants: /// - No collateral stays in the market - reserves should be 0. The minimal /// amount of collateral is requested from the parent in order to mint /// tokens. Any excess after all operations is given back to the parent /// - At the end of a buy operation at least one of the token balances is 0, /// otherwise some amount would be mergeable. The market remains without /// collateral reserves, and with some tokens besides the output token. If /// a subsequent buy takes some tokens that are readily available, that /// allows us to return the investment collateral of the buyer back to the /// parent pool, since we don't need it to mint any tokens. /// - This means the parent pool's effective funding is ALWAYS in terms of /// tokens in the market, because any excess collateral is always returned /// back to the parent /// - The AMM algorithm aims to keep the pool value constant, and all the /// balances to be at a target. This target is the cost basis of all /// funding. The idea is all revenue comes from a flat fee on trades, and /// the funding pool itself tries to keep a steady value. /// - Sometimes a bet results in a "push" requiring a full refund. This /// necessitates setting aside an outcome for a full refund. Tokens of this /// extra outcome are worth zero during normal trading, and are given out /// 1:1 for every collateral the user puts in. This has to be taken into /// account when calculating how much to request from the parent, since we /// also need to mint enough tokens to fulfill the refund obligation /// @param investment Amount of collateral token used to buy tokens /// @param indexOut Position index of the condition. /// @param extraFeeDecimal extra fees as a decimal to add on top of existing fees /// @param targetContext the current state of the pool - target, balances, available liquidity /// @param fairPriceDecimals current fair prices for all priced outcomes /// @return outcomeTokensBought how many outcome tokens would the user receive from the transaction /// @return tokensToMint the minimal number of tokens to mint in order to satisfy the order /// @return fees how much collateral is taken as fees /// @return spontaneousPrices pries of tokens after the buy /// @return parentOps operations to perform with parent funding function _calcBuyAmount( uint256 investment, uint256 indexOut, uint256 extraFeeDecimal, AmmMath.TargetContext memory targetContext, uint256[] memory fairPriceDecimals ) private view returns ( uint256 outcomeTokensBought, uint256 tokensToMint, uint256 fees, uint256[] memory spontaneousPrices, AmmMath.ParentOperations memory parentOps ) { fees = (investment * (feeDecimal + extraFeeDecimal)) / ONE_DECIMAL; if (fees >= investment) revert FeesConsumeInvestment(); uint256 investmentMinusFees = investment - fees; (uint256 tokensExchanged, uint256 newPoolValue) = AmmMath.calcBuyAmountV3( investmentMinusFees, indexOut, targetContext.target, targetContext.globalReserves, targetContext.balances, fairPriceDecimals ); AmmMath.BuyContext memory buyContext = AmmMath.BuyContext(investmentMinusFees, tokensExchanged, newPoolValue, investment); address parent = getParentPool(); uint256 parentShares = balanceOf(parent); assert(parentShares == totalSupply()); // All shares should be owned by parent (outcomeTokensBought, tokensToMint, parentOps) = AmmMath.calcMarketPoolChanges(indexOut, parentShares, targetContext, buyContext); spontaneousPrices = AmmMath.calcSpontaneousPricesV3( targetContext.target, targetContext.globalReserves, targetContext.balances, fairPriceDecimals ); } /// @notice Calculates the amount of conditional tokens that should be sold to receive a particular amount of /// collateral. Currently not supported but will be implemented soon function calcSellAmount(uint256, /* returnAmount */ uint256 /* outcomeIndex */ ) public pure returns (uint256) { revert OperationNotSupported(); } /// ERC165 /// @dev This should check all incremental interfaces. Reasoning: /// - Market shows support for all revisions of the interface up to latest. /// - BatchBet checks the minimal version that supports the function it needs. /// - Any other contract also only checks the minimal version that supports the function it needs. /// - When a new interface is released, there is no need to release new versions of "user" contracts like /// BatchBet, because they use the minimal interface and new releases of markets will be backwards compatible. function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165Upgradeable, ERC1155ReceiverUpgradeable) returns (bool) { return interfaceId == type(IMarketMakerV1).interfaceId || interfaceId == type(IChildFundingPoolV1).interfaceId || interfaceId == type(IFundingPoolV1).interfaceId || interfaceId == type(IFundingPoolV1_1).interfaceId || interfaceId == type(IMarketMakerV1_2).interfaceId || ERC1155ReceiverUpgradeable.supportsInterface(interfaceId); } /// @notice Returns true/false if the market is currently halted or not, respectively. /// @dev It would be more convenient to use block number since the timestamp is modifiable by miners function isHalted() public view returns (bool) { return conditionalTokens.isHalted(conditionId); } /// @notice Computes the pool balance in conditional token for each market position. /// @return poolBalances The pool balance in conditional tokens for each position. function getPoolBalances() public view returns (uint256[] memory) { return conditionalTokens.balanceOfCondition(address(this), collateralToken, conditionId); } /// @dev It would be maybe convenient to remove this function since it is used only once in the code and adds extra /// complexity. If it names clarifies better what splitPosition those it could be just changed in the /// ConditionalContract function splitPositionThroughAllConditions(uint256 amount) private { collateralToken.safeApprove(address(conditionalTokens), amount); conditionalTokens.splitPosition(collateralToken, conditionId, amount); } /// @dev Requests funds from parent if needed function _applyParentRequest(AmmMath.ParentOperations memory parentOps) private { address parent = getParentPool(); if (parentOps.collateralToRequestFromParent > 0) { assert(parentOps.collateralToReturnToParent == 0); assert(parentOps.sharesToBurnOfParent == 0); // We need more collateral than available in reserves, so ask the parent assert(parent != address(0x0)); (uint256 fundingGiven,) = IParentFundingPoolV1(parent).requestFunding(parentOps.collateralToRequestFromParent); if (fundingGiven < parentOps.collateralToRequestFromParent) revert InvestmentDrainsPool(); } } /// @dev Returns funds back to parent if available function _applyParentReturn(AmmMath.ParentOperations memory parentOps) private { address parent = getParentPool(); if (parentOps.sharesToBurnOfParent > 0 || parentOps.collateralToReturnToParent > 0) { assert(parentOps.collateralToRequestFromParent == 0); // We have extra collateral that should be returned back to the parent assert(parent != address(0x0)); if (parentOps.sharesToBurnOfParent > 0) { _burnSharesOf(parent, parentOps.sharesToBurnOfParent); } if (parentOps.collateralToReturnToParent > 0) { collateralToken.safeTransfer(parent, parentOps.collateralToReturnToParent); } IParentFundingPoolV1(parent).fundingReturned( parentOps.collateralToReturnToParent, parentOps.sharesToBurnOfParent ); uint256[] memory noTokens = new uint256[](0); emit FundingRemoved(parent, parentOps.collateralToReturnToParent, noTokens, parentOps.sharesToBurnOfParent); } } /// @dev calculates how the fees should be distributed. Calculation is split from action to avoid re-entrancy attacks function _calcDistributeFees() private view returns (FeeProfileID[] memory profileIds, uint256[] memory profileAmounts, uint256 totalAmount) { uint256 collectedFees_ = collectedFees; if (collectedFees_ == 0) return (profileIds, profileAmounts, totalAmount); // If there is a refund, all fees go back to parent since it funded the // refunds in the first place. No distribution to others takes place (uint256[] memory numerators,) = conditionalTokens.getPayouts(conditionId); uint256 refundIndex = AmmMath.getRefundIndex(numerators); if (numerators[refundIndex] > 0) return (profileIds, profileAmounts, totalAmount); // Send to fee distributor profileIds = FEE_DISTRIBUTOR.approvedProfiles(); profileAmounts = new uint256[](profileIds.length); totalAmount = 0; for (uint256 i = 0; i < profileIds.length; i++) { FeeProfileID profileId = profileIds[i]; uint256 profileFees = feesByProfile[profileId]; if (profileFees == 0) continue; profileAmounts[i] = profileFees; totalAmount += profileFees; } } function _distributeFees(FeeProfileID[] memory profileIds, uint256[] memory profileAmounts, uint256 totalAmount) private { if (totalAmount == 0) return; // Make fees part of reserves _unlockFees(totalAmount); collateralToken.approve(address(FEE_DISTRIBUTOR), totalAmount); FEE_DISTRIBUTOR.transferToProfiles(collateralToken, profileIds, profileAmounts); } function _retainFees(uint256 feeAmount, FeeProfileID feeProfileId) private { _retainFees(feeAmount); if (FeeProfileID.unwrap(feeProfileId) != 0x0) { feesByProfile[feeProfileId] += feeAmount; } } /// @dev Gets the actual target balance available, that includes any /// potential funding from the parent pool. /// @return targetContext relevant quantities needed to work with the liquidity pool function getTargetBalance() public view returns (AmmMath.TargetContext memory targetContext, uint256[] memory fairPriceDecimals) { // The logic is such that any excess collateral is always returned to the parent // We don't use reserves() here as that may be altered by donations to the market uint256[] memory balances; (balances, fairPriceDecimals) = conditionalTokens.getPositionInfo(address(this), collateralToken, conditionId); // Ensure last price is for refund outcome and price is 0 assert(balances.length == fairPriceDecimals.length + 1); targetContext = AmmMath.TargetContext({ target: getTotalFunderCostBasis(), globalReserves: 0, balances: balances }); // check how much funding we can actually request from parent address parent = getParentPool(); if (parent != address(0x0)) { (uint256 availableFromParent, uint256 availableTarget) = IParentFundingPoolV1(parent).getAvailableFunding(address(this)); targetContext.target += availableTarget; targetContext.globalReserves += availableFromParent; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165Upgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165Upgradeable).interfaceId; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165Upgradeable.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155ReceiverUpgradeable is IERC165Upgradeable { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC1155/utils/ERC1155Receiver.sol) pragma solidity ^0.8.0; import "../IERC1155ReceiverUpgradeable.sol"; import "../../../utils/introspection/ERC165Upgradeable.sol"; import "../../../proxy/utils/Initializable.sol"; /** * @dev _Available since v3.1._ */ abstract contract ERC1155ReceiverUpgradeable is Initializable, ERC165Upgradeable, IERC1155ReceiverUpgradeable { function __ERC1155Receiver_init() internal onlyInitializing { } function __ERC1155Receiver_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) { return interfaceId == type(IERC1155ReceiverUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IConditionalTokensEvents, IConditionalTokens, IERC20, ConditionalTokensErrors } from "./IConditionalTokens.sol"; import { PackedPrices } from "../PackedPrices.sol"; import { ConditionID, QuestionID, CTHelpers } from "./CTHelpers.sol"; interface IConditionalTokensEventsV1_2 is IConditionalTokensEvents { /// @dev Event emitted only when a condition is prepared to save on gas costs /// @param conditionId which condition had its price set /// @param packedPrices the encoded prices in a byte array event ConditionPricesUpdated(ConditionID indexed conditionId, bytes packedPrices); /// @dev Halt time for a condition has been updated event HaltTimeUpdated(ConditionID indexed conditionId, uint32 haltTime); } interface IConditionalTokensV1_2 is IConditionalTokens, IConditionalTokensEventsV1_2 { struct PriceUpdate { ConditionID conditionId; bytes packedPrices; } struct HaltUpdate { ConditionID conditionId; /// @dev haltTime as seconds since epoch, same as block.timestamp /// unsigned 32bit epoch timestamp in seconds should be suitable until year 2106 uint32 haltTime; } function prepareConditionByOracle( QuestionID questionId, uint256 outcomeSlotCount, bytes calldata packedPrices, uint32 haltTime_ ) external returns (ConditionID); function updateFairPrices(ConditionID conditionId, bytes calldata packedPrices) external; function batchUpdateFairPrices(PriceUpdate[] calldata priceUpdates) external; function getFairPrices(ConditionID conditionId) external view returns (uint256[] memory fairPriceDecimals); function updateHaltTime(ConditionID conditionId, uint32 haltTime) external; function batchUpdateHaltTimes(HaltUpdate[] calldata haltUpdates) external; /// @dev Returns the halt time of a condition. Will be 0 if no price oracle /// is configured (if old prepareCondition was called). function haltTime(ConditionID conditionId) external view returns (uint32); /// @dev Returns if the condition is halted or already resolved. Halting /// only effects price updates. If no price oracle was configured for a /// condition, this will always return true. This is ok since it does not /// affect any other aspect. function isHalted(ConditionID conditionId) external view returns (bool); /// @dev combines together balanceOfCondition and getFairPrices into one call to minimize gas usage function getPositionInfo(address account, IERC20 collateralToken, ConditionID conditionId) external view returns (uint256[] memory balances, uint256[] memory fairPriceDecimals); /// @dev Get the current payouts for a condition. function getPayouts(ConditionID conditionId) external view returns (uint256[] memory numerators, uint256 denominator); } interface ILegConditionalTokens { /// @dev given conditions and indices within those conditions, gives the fair price for the parlay function getParlayFairPrices(ConditionID[] calldata conditionIds, uint256[] calldata indices) external view returns (uint256[] memory fairPriceDecimals); /// @dev given conditions and indices within those conditions, gives the payout for the parlay function getParlayPayouts(ConditionID[] calldata conditionIds, uint256[] calldata indices) external view returns (uint256[] memory numerators, uint256 denominator); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import { ERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { IFundingPoolV1_1, IFundingPoolV1 } from "./IFundingPoolV1_1.sol"; import { FundingMath } from "./FundingMath.sol"; import { ArrayMath, ClampedMath } from "../Math.sol"; /// @dev A contract with the necessary storage to keep track of funding. Should /// not be used as a standalone contract, but like a mixin abstract contract FundingPool is IFundingPoolV1_1, ERC20Upgradeable { using Math for uint256; using ArrayMath for uint256[]; using SafeERC20 for IERC20Metadata; IERC20Metadata public collateralToken; /// @inheritdoc IFundingPoolV1 uint256 public collectedFees; /// @dev Keeps track of total collateral used to enter the current liquidity /// position of the funder. It is increased by the collateral amount every /// time the funder funds, and then reduced proportionally to how many LP /// shares are withdrawn during defunding. This can be considered the "cost /// basis" of the lp shares of each funder mapping(address => uint256) private funderCostBasis; /// @dev Total collateral put into funding the current LP shares uint256 private totalFunderCostBasis; /// @dev By default fees are no longer withdrawable - it's up to /// implementation to decide what to do with the fees and how to distribute /// them function withdrawFees(address /* funder */ ) public pure returns (uint256) { return 0; } /// @dev By default fees are no longer withdrawable - it's up to /// implementation to decide what to do with the fees and how to distribute /// them function feesWithdrawableBy(address /* account */ ) public pure returns (uint256) { return 0; } /// @inheritdoc IFundingPoolV1 function reserves() public view returns (uint256 collateral) { uint256 totalCollateral = collateralToken.balanceOf(address(this)); uint256 fees = collectedFees; assert(totalCollateral >= fees); return totalCollateral - fees; } // solhint-disable-next-line func-name-mixedcase function __FundingPool_init(IERC20Metadata _collateralToken) internal onlyInitializing { __ERC20_init("", ""); __FundingPool_init_unchained(_collateralToken); } // solhint-disable-next-line func-name-mixedcase function __FundingPool_init_unchained(IERC20Metadata _collateralToken) internal onlyInitializing { if (_collateralToken.decimals() > 18) revert ExcessiveCollateralDecimals(); collateralToken = _collateralToken; } /// @dev Burns the LP shares corresponding to a particular owner account /// Also note that _beforeTokenTransfer will be invoked to make sure the fee /// bookkeeping is updated for the owner. /// @param owner Account to whom the LP shares belongs to. /// @param sharesToBurn Portion of LP pool to burn. function _burnSharesOf(address owner, uint256 sharesToBurn) internal { // slither-disable-next-line dangerous-strict-equalities if (sharesToBurn == 0) revert InvalidBurnAmount(); uint256 costBasisReduction = FundingMath.calcCostBasisReduction(balanceOf(owner), sharesToBurn, funderCostBasis[owner]); funderCostBasis[owner] -= costBasisReduction; totalFunderCostBasis -= costBasisReduction; _burn(owner, sharesToBurn); } function _mintSharesFor(address receiver, uint256 collateralAdded, uint256 poolValue) internal returns (uint256 sharesMinted) { if (collateralAdded == 0) revert InvalidFundingAmount(); sharesMinted = FundingMath.calcFunding(collateralAdded, totalSupply(), poolValue); // Ensure this stays below type(uint128).max to avoid overflow in liquidity calculations uint256 costBasisAfter = funderCostBasis[receiver] + collateralAdded; if (costBasisAfter > type(uint128).max) revert ExcessiveFunding(); funderCostBasis[receiver] = costBasisAfter; totalFunderCostBasis += collateralAdded; address sender = _msgSender(); collateralToken.safeTransferFrom(sender, address(this), collateralAdded); // Ensure total shares for funding does not exceed type(uint128).max to avoid overflow uint256 sharesAfter = balanceOf(receiver) + sharesMinted; if (sharesAfter > type(uint128).max) revert ExcessiveFunding(); _mint(receiver, sharesMinted); emit FundingAdded(sender, receiver, collateralAdded, sharesMinted); } /// @dev adjust cost basis for a funder function _adjustCostBasis(address funder, uint256 adjustment) internal { funderCostBasis[funder] = funderCostBasis[funder] + adjustment; totalFunderCostBasis = totalFunderCostBasis + adjustment; } /// @dev Sets aside some collateral as fees function _retainFees(uint256 collateralFees) internal { if (collateralFees > reserves()) revert FeesExceedReserves(); if (collateralFees == 0) return; collectedFees += collateralFees; emit FeesRetained(collateralFees); } /// @dev put fees back into reserves function _unlockFees(uint256 collateralFees) internal { if (collateralFees > collectedFees) revert FeesExceedCollected(); collectedFees -= collateralFees; } /// @dev How much collateral was spent by all funders to obtain their current shares function getTotalFunderCostBasis() public view returns (uint256) { return totalFunderCostBasis; } function getFunderCostBasis(address funder) public view returns (uint256) { return funderCostBasis[funder]; } // solhint-disable-next-line ordering uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IChildFundingPoolV1 } from "./IChildFundingPoolV1.sol"; import { IParentFundingPoolV1 } from "./IParentFundingPoolV1.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; /// @dev A Mixin contract that provides a basic implementation of the IChildFundingPoolV1 interface abstract contract ChildFundingPool is Initializable, IChildFundingPoolV1 { using ERC165Checker for address; address private _parent; bytes4 internal constant PARENT_FUNDING_POOL_INTERFACE_ID = 0xd0632e9a; function getParentPool() public view returns (address) { return _parent; } // solhint-disable-next-line func-name-mixedcase function __ChildFundingPool_init(address parentPool) internal onlyInitializing { __ChildFundingPool_init_unchained(parentPool); } // solhint-disable-next-line func-name-mixedcase function __ChildFundingPool_init_unchained(address parentPool) internal onlyInitializing { assert(address(_parent) == address(0x0)); if (parentPool != address(0x0) && !parentPool.supportsInterface(PARENT_FUNDING_POOL_INTERFACE_ID)) { revert NotAParentPool(parentPool); } _parent = parentPool; emit ParentPoolAdded(parentPool); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import { AdminExecutorAccessUpgradeable } from "../AdminExecutorAccess.sol"; type FeeProfileID is uint256; interface FeeDistributorErrors { error FeeProfileNotFound(FeeProfileID); error InvalidFeeProfile(); /// @dev Error when a beneficiary gets nothing because the recursive /// portions have left too little to distribute. Typically should wait /// longer before distributing to increase the fund size. error UnfairDistribution(); error InvalidAmountArray(); } interface IFeeDistributorEvents { struct FeeProfile { /// @dev portion of funds out of 256 that should be sent to the child. /// The rest gets directed to the beneficiary uint8 childPortion; address beneficiary; FeeProfileID childProfile; } event FeeProfileCreated(FeeProfileID indexed profileId, FeeProfile profile); } /// @dev A pool of collateral that can be distributed to beneficiaries according /// to some fee profile - what percentage of the amount goes to whom. This is /// achieved by chaining profiles together, where a portion of the collateral /// for a profile gets sent to a beneficiary and the rest go to another profile, /// and so on until all collateral is distributed. /// /// Creating new profiles is permissionless. contract FeeDistributor is IFeeDistributorEvents, FeeDistributorErrors, AdminExecutorAccessUpgradeable { using SafeERC20 for IERC20; using Math for uint256; using EnumerableSet for EnumerableSet.UintSet; struct Transfer { FeeProfileID profileId; uint256 amount; } FeeProfileID public constant NULL_PROFILE_ID = FeeProfileID.wrap(uint256(0x0)); uint256 private constant PORTION_DIVISOR = 256; mapping(FeeProfileID => FeeProfile) public profiles; mapping(IERC20 => mapping(FeeProfileID => uint256)) public balances; EnumerableSet.UintSet private approvedProfileIds; /// @custom:oz-upgrades-unsafe-allow constructor constructor(address admin) { // The contract is not meant to be upgradeable or run behind a proxy, // but uses upgradeable base contracts because it shares some base // classes with other contracts that need to be behind a proxy initialize(admin, address(0x0)); _disableInitializers(); } /// @dev Create a new fee profile /// @return profileId the unique ID that identifies the profile function addProfile(FeeProfile calldata profile) external returns (FeeProfileID profileId) { // Do not allow the last profile in a chain not to have everything allocated to the beneficiary if (FeeProfileID.unwrap(profile.childProfile) == 0x0 && profile.childPortion > 0) { revert InvalidFeeProfile(); } profileId = FeeProfileID.wrap(uint256(keccak256(abi.encode(profile)))); profiles[profileId] = profile; emit FeeProfileCreated(profileId, profile); } function _transferToProfile(IERC20 collateralToken, FeeProfileID profileId, uint256 amount) internal { if (profiles[profileId].beneficiary == address(0x0)) revert FeeProfileNotFound(profileId); balances[collateralToken][profileId] += amount; } function transferToProfile(IERC20 collateralToken, FeeProfileID profileId, uint256 amount) external { _transferToProfile(collateralToken, profileId, amount); collateralToken.safeTransferFrom(msg.sender, address(this), amount); } function transferToProfiles(IERC20 collateralToken, FeeProfileID[] calldata profileIds, uint256[] calldata amounts) external { if (profileIds.length != amounts.length) revert InvalidAmountArray(); uint256 total = 0; for (uint256 i = 0; i < amounts.length; i++) { uint256 amount = amounts[i]; _transferToProfile(collateralToken, profileIds[i], amount); total += amount; } collateralToken.safeTransferFrom(msg.sender, address(this), total); } function distributeFees(IERC20 collateralToken, FeeProfileID profileID) external returns (uint256 totalTransferred) { mapping(FeeProfileID => uint256) storage tokenBalances = balances[collateralToken]; // Go down the entire chain of profiles and distribute the fees to all beneficiaries uint256 childAmount = 0; while (FeeProfileID.unwrap(profileID) != 0x0) { // Read these together to save on gas cost (should be in same slot) uint256 childPortion = profiles[profileID].childPortion; address beneficiary = profiles[profileID].beneficiary; uint256 balance = tokenBalances[profileID] + childAmount; if (balance == 0) break; // Using ceilDiv here, so that beneficiaries earlier in the // chain don't have an incentive to do this too early, to starve // beneficiaries further down the line childAmount = (balance * childPortion).ceilDiv(PORTION_DIVISOR); uint256 transferAmount = balance - childAmount; if (transferAmount == 0) revert UnfairDistribution(); totalTransferred += transferAmount; // All balances are distributed, either to beneficiary or child profile tokenBalances[profileID] = 0; // Re-entrancy here is ok, because the state of the contract at that // moment is "finalized" relative to the current `profileID`. Any // subsequent state variables that are modified, are for other // profileIDs which haven't been touched yet. The loop is just an // optimization to save us from manually calling this function for // all profiles down the chain one after another. // slither-disable-next-line reentrancy-no-eth collateralToken.safeTransfer(beneficiary, transferAmount); profileID = profiles[profileID].childProfile; } // Fee profile that leaves something unallocated should not be allowed assert(childAmount == 0); } function approveProfile(FeeProfileID profileId) external onlyAdmin { if (profiles[profileId].beneficiary == address(0x0)) revert FeeProfileNotFound(profileId); approvedProfileIds.add(FeeProfileID.unwrap(profileId)); } function unapproveProfile(FeeProfileID profileId) external onlyAdmin { if (profiles[profileId].beneficiary == address(0x0)) revert FeeProfileNotFound(profileId); approvedProfileIds.remove(FeeProfileID.unwrap(profileId)); } function approvedProfiles() external view returns (FeeProfileID[] memory profileIds) { uint256[] memory ids = approvedProfileIds.values(); assembly ("memory-safe") { profileIds := ids } } function initialize(address admin, address executor) private initializer { __AdminExecutor_init(admin, executor); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { MarketErrors } from "./MarketErrors.sol"; import { IFundingPoolV1 } from "../funding/IFundingPoolV1.sol"; import { IUpdateFairPrices } from "./IUpdateFairPrices.sol"; /// @dev Interface evolution is done by creating new versions of the interfaces /// and making sure that the derived MarketMaker supports all of them. /// Alternatively we could have gone with breaking the interface down into each /// function one by one and checking each function selector. This would /// introduce a lot more code in `supportsInterface` which is called often, so /// it's easier to keep track of incremental evolution than all the constituent /// pieces interface IMarketMakerV1 is IFundingPoolV1, IUpdateFairPrices, MarketErrors { event MarketBuy( address indexed buyer, uint256 investmentAmount, uint256 feeAmount, uint256 indexed outcomeIndex, uint256 outcomeTokensBought ); event MarketSell( address indexed seller, uint256 returnAmount, uint256 feeAmount, uint256 indexed outcomeIndex, uint256 outcomeTokensSold ); event MarketSpontaneousPrices(uint256[] spontaneousPrices); function removeFunding(uint256 sharesToBurn) external returns (uint256 collateral, uint256[] memory sendAmounts); function buyFor(address receiver, uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy) external returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices); function buy(uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy) external returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices); function sell(uint256 returnAmount, uint256 outcomeIndex, uint256 maxOutcomeTokensToSell) external returns (uint256 outcomeTokensSold); function removeCollateralFundingOf(address ownerAndReceiver, uint256 sharesToBurn) external returns (uint256[] memory sendAmounts, uint256 collateral); function removeAllCollateralFunding(address[] calldata funders) external returns (uint256 totalSharesBurnt, uint256 totalCollateralRemoved); function isHalted() external view returns (bool); function calcBuyAmount(uint256 investmentAmount, uint256 outcomeIndex) external view returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices); function calcSellAmount(uint256 returnAmount, uint256 outcomeIndex) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IMarketMakerV1 } from "./IMarketMaker.sol"; import { FeeProfileID } from "../funding/FeeDistributor.sol"; interface IMarketMakerV1_2 is IMarketMakerV1 { /// @dev Same as the simpler buyFor, except using a custom feeProfile for how to distribute the fees /// @param receiver Which account receives te bought conditional tokens /// @param investmentAmount How much collateral to spend on the order /// @param outcomeIndex Which outcome to purchase /// @param minOutcomeTokensToBuy Minimal amount of conditional tokens expected to be received. Controls max slippage /// @param extraFeeDecimal If buyer wants to deposit any extra fees on top of the ones set by the market /// @param feeProfileId Fee Profile Id determines how overall fees are ultimately distributed to beneficiaries function buyFor( address receiver, uint256 investmentAmount, uint256 outcomeIndex, uint256 minOutcomeTokensToBuy, uint256 extraFeeDecimal, FeeProfileID feeProfileId ) external returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices); function calcBuyAmount(uint256 investmentAmount, uint256 indexOut, uint256 extraFeeDecimal) external view returns (uint256 outcomeTokensBought, uint256 feeAmount, uint256[] memory spontaneousPrices); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { ArrayMath, ClampedMath } from "../Math.sol"; import { AmmErrors } from "./AmmErrors.sol"; import { UD60x18, UNIT, ZERO, exp, convert, unwrap, wrap } from "@prb/math/UD60x18.sol"; library UD60x18Extensions { function addScalar(UD60x18 x, uint256 y) internal pure returns (UD60x18 result) { result = wrap(unwrap(x) + y); } function subScalar(UD60x18 x, uint256 y) internal pure returns (UD60x18 result) { result = wrap(unwrap(x) - y); } function mulScalar(UD60x18 x, uint256 y) internal pure returns (UD60x18 result) { result = wrap(unwrap(x) * y); } function divScalar(UD60x18 x, uint256 y) internal pure returns (UD60x18 result) { result = wrap(unwrap(x) / y); } function ceilDivScalar(UD60x18 x, uint256 y) internal pure returns (UD60x18 result) { result = wrap(Math.ceilDiv(unwrap(x), y)); } function ceilDiv(UD60x18 x, UD60x18 y) internal pure returns (UD60x18 result) { // (x - 1) / (y + 1) result = unwrap(x) == 0 ? ZERO : addScalar(subScalar(x, 1).div(y), 1); } } library AmmMath { using Math for uint256; using ClampedMath for uint256; using ArrayMath for uint256[]; using UD60x18Extensions for UD60x18; uint256 internal constant PRECISION_DECIMALS = 18; uint256 internal constant ONE_DECIMAL = 10 ** PRECISION_DECIMALS; // The smallest exponent in the slippage formula for e ^ ((a d) / t) // Determined empirically UD60x18 internal constant MIN_EXPONENT = UD60x18.wrap(10 ** 6); // Max exponent possible that would not overflow slippage calculations UD60x18 internal constant MAX_EXPONENT = UD60x18.wrap(132e18); /// @dev Calculate the pool value given token balances and a set of fair prices /// @param balances The current balances of each outcome token in a pool /// @param fairPriceDecimals normalized prices for each outcome token /// provided externally. Any missing trailing prices are assumed to be 0. /// @return poolValue total sum of value of all tokens function calcPoolValue(uint256[] memory balances, uint256[] memory fairPriceDecimals) internal pure returns (uint256 poolValue) { // Assume any missing trailing prices are all 0 if (fairPriceDecimals.length > balances.length) revert AmmErrors.BalancePriceLengthMismatch(); uint256 totalValue = 0; uint256 normalization = 0; for (uint256 i = 0; i < fairPriceDecimals.length; ++i) { totalValue += fairPriceDecimals[i] * balances[i]; normalization += fairPriceDecimals[i]; } poolValue = totalValue.ceilDiv(normalization); } /// @dev Calculate the pool value given token balances and a set of fair prices, as well as extra collateral /// @param balances The current balances of each outcome token in a pool /// @param fairPriceDecimals normalized prices for each outcome token /// provided externally. Any missing trailing prices are assumed to be 0. /// @param collateralBalance extra collateral balance /// @return poolValue total sum of value of all tokens function calcPoolValue(uint256[] memory balances, uint256[] memory fairPriceDecimals, uint256 collateralBalance) internal pure returns (uint256 poolValue) { return calcPoolValue(balances, fairPriceDecimals) + collateralBalance; } /// @dev Calculate how many tokens result from exchanging at a flat rate. A /// minimum price is used to value output tokens, but not input tokens. /// Minimum price for output tokens avoids giving out too many if the price /// is very small. The minimum price is not symmetric, because we don't /// want to overvalue tokens that are coming in, and end up giving out more /// output tokens as a result /// @param tokensMintedDecimal quantity of input tokens to be exchanged /// @param fairPriceInDecimal price of input tokens /// @param fairPriceOutDecimal price of output tokens /// @return tokensOutDecimal quantity of tokens resulting from the exchange function calcElementwiseFairAmount( uint256 tokensMintedDecimal, uint256 fairPriceInDecimal, uint256 fairPriceOutDecimal ) internal pure returns (uint256 tokensOutDecimal) { assert(fairPriceOutDecimal > 0); tokensOutDecimal = (tokensMintedDecimal * fairPriceInDecimal) / fairPriceOutDecimal; } uint256 internal constant MIN_FLATNESS = 0.1e18; // flatness parameter cannot be lower than 0.01 uint256 internal constant MAX_FLATNESS = 2.0e18; // flatness parameter cannot exceed 2 // The lower the price, the higher the flatness of the curve (to decrease slippage) // The two are inversly related. uint256 internal constant PRICE_WITH_MAX_FLATNESS = 0.05e18; uint256 internal constant PRICE_WITH_MIN_FLATNESS = 0.5e18; uint256 internal constant PRICE_FLATNESS_LUT_INCREMENT = 0.05e18; /// @dev The new algorithm has a flatness parameter, that reduces slippage /// when balance is close to target. At flatness == 1.0 the curve is /// equivalent to e^x, and flatness == 2.0, the curve is equivalent to /// tanh(x), and as flatness approaches 0, the curve approximates the /// constant product curve. /// The flatness is adjusted based on token price - when a token is cheap, a /// larger amount of the token is taken from the balance. When a cheap token /// is bought, more tokens are removed from balance and more slippage /// occurs. In order to encourage equal bets on both sides, the slippage /// should be close for "typical" size bets. The values are derived for bets /// that are 1% of liquidity for a market. function calculateFlatness(uint256 fairPriceDecimal) internal pure returns (uint256 flatnessDecimal) { // Lookup table from price to the flatness parameter. The flatness is // derived such that the initial slippage for a low-price p token is // equivalent to slippage that you would get from a higher-price (1 - p) // token. uint256[10] memory lut = [ uint256(2.0e18), // {0.05, 2.0302}, uint256(1.83963e18), // {0.1, 1.83963}, uint256(1.69173e18), // {0.15, 1.69173}, uint256(1.54082e18), // {0.2, 1.54082}, uint256(1.37613e18), // {0.25, 1.37613}, uint256(1.19123e18), // {0.3, 1.19123}, uint256(0.979886e18), // {0.35, 0.979886}, uint256(0.734672e18), // {0.4, 0.734672}, uint256(0.445846e18), // {0.45, 0.445846}, uint256(0.1e18) // {0.5, 0.1} ]; // Price that is clamped to the min and max, and also offset such that // PRICE_WITH_MAX_FLATNESS gets remapped to 0 for indexing uint256 remappedPriceDecimal = fairPriceDecimal.clampBetween(PRICE_WITH_MAX_FLATNESS, PRICE_WITH_MIN_FLATNESS) - PRICE_WITH_MAX_FLATNESS; // index into lut and linearly interpolate uint256 index = remappedPriceDecimal / PRICE_FLATNESS_LUT_INCREMENT; uint256 blendAmount = remappedPriceDecimal % PRICE_FLATNESS_LUT_INCREMENT; uint256 nextIndex = Math.min(9, index + 1); flatnessDecimal = lut[index] - (blendAmount * (lut[index] - lut[nextIndex])) / PRICE_FLATNESS_LUT_INCREMENT; } /// @dev calculate the proportion of spread attributed to the output token. /// The less balance we have than the target, the more the spread since we /// are losing the token. function applyOutputSlippage(uint256 balance, uint256 tokensOut, uint256 targetBalance, uint256 flatnessDecimal) internal pure returns (uint256 adjustedTokensDecimal) { uint256 tokensBelowTarget; { // How many tokens from tokensOut that are above the target balance. Exchanged 1:1 uint256 tokensAboveTarget = Math.min(tokensOut, balance - Math.min(targetBalance, balance)); adjustedTokensDecimal = tokensAboveTarget * ONE_DECIMAL; balance -= tokensAboveTarget; tokensBelowTarget = tokensOut - tokensAboveTarget; } // Tokens that are now bringing us below target are run through amm to introduce slippage if (tokensBelowTarget > 0) { if (balance == 0) { return adjustedTokensDecimal; } assert(balance <= targetBalance); assert(flatnessDecimal >= MIN_FLATNESS); assert(flatnessDecimal <= MAX_FLATNESS); // a = flatness // b = balance // d = tokensBelowTarget (how many tokens we need to exchange through amm curve) // t = targetBalance // Need to calculate new balance: // E = e ^ ((a d) / t) // L = (b + a t - a b) // newBalance = (a b t) / (a b + E L - b) UD60x18 balanceDecimal = convert(balance); UD60x18 flatnessTimesBalanceDecimal = UD60x18.wrap(flatnessDecimal * balance); // (a b t) UD60x18 numeratorDecimal = flatnessTimesBalanceDecimal.mulScalar(targetBalance); // E = e ^ ((a d) / t) UD60x18 flatnessTimesTokensDecimal = UD60x18.wrap(flatnessDecimal * tokensBelowTarget); UD60x18 exponent = flatnessTimesTokensDecimal.divScalar(targetBalance); if (exponent.gte(MAX_EXPONENT)) { return adjustedTokensDecimal + (balance - 1) * ONE_DECIMAL; } // L = (b + a t - a b) UD60x18 largeTermDecimal = balanceDecimal.add(wrap(flatnessDecimal * targetBalance)).sub(flatnessTimesBalanceDecimal); UD60x18 newBalanceDecimal; if (exponent.lt(MIN_EXPONENT)) { // At extremely small values of the exponent, e^x, is close to 1 + x + x^2 / 2 // Rewriting: // E L // = (e ^ ((a d) / t)) L // =~ (1 + ((a d) / t) + ((a d) / t)^2 / 2 ) L // = L + L a d / t + L ((a d) / t)^2 / 2 // = L + L a d / t + L (a d)^2 / 2 t^2 UD60x18 intermediateTermDecimal = largeTermDecimal; largeTermDecimal = largeTermDecimal.mul(flatnessTimesTokensDecimal); intermediateTermDecimal = intermediateTermDecimal.add(largeTermDecimal.divScalar(targetBalance)); intermediateTermDecimal = intermediateTermDecimal.add( largeTermDecimal.mul(flatnessTimesTokensDecimal).divScalar(2 * targetBalance * targetBalance) ); // (a b + E L - b) UD60x18 denominatorDecimal = flatnessTimesBalanceDecimal.add(intermediateTermDecimal).sub(balanceDecimal); newBalanceDecimal = numeratorDecimal.ceilDiv(denominatorDecimal); } else if (exponent.lt(convert(80))) { UD60x18 exponentialTermDecimal = exp(exponent); UD60x18 intermediateTermDecimal = exponentialTermDecimal.mul(largeTermDecimal); // (a b + E L - b) UD60x18 denominatorDecimal = flatnessTimesBalanceDecimal.add(intermediateTermDecimal).sub(balanceDecimal); newBalanceDecimal = numeratorDecimal.ceilDiv(denominatorDecimal); } else { uint256 exponentialTerm = convert(exp(exponent)); // (a b + E L - b) uint256 denominator = convert(flatnessTimesBalanceDecimal) + Math.mulDiv(exponentialTerm, unwrap(largeTermDecimal), ONE_DECIMAL) - balance; newBalanceDecimal = wrap(unwrap(numeratorDecimal).ceilDiv(denominator)); } // Don't allow balance to go to 0; newBalanceDecimal = newBalanceDecimal.lt(UNIT) ? UNIT : newBalanceDecimal; assert(newBalanceDecimal.lte(balanceDecimal)); adjustedTokensDecimal += unwrap(balanceDecimal.sub(newBalanceDecimal)); } } function applyOutputSlippage(uint256 balance, uint256 tokensOut, uint256 targetBalance) internal pure returns (uint256 adjustedTokensDecimal) { return applyOutputSlippage(balance, tokensOut, targetBalance, ONE_DECIMAL); } /// @dev calculate the output spread. This is equivalent to output slippage /// assuming an infinitessimal trade size. tokensOutDecimal does not /// influence the amount of spread. function applyOutputSpread( uint256 balance, uint256 tokensOutDecimal, uint256 targetBalance, uint256 flatnessDecimal ) internal pure returns (uint256) { // Only apply slippage if balance below target if (balance < targetBalance) { // a = flatness // b = balance // d = tokensOut // t = targetBalance // b d (b + a t - a b) / t^2 uint256 largeTermDecimal = balance * ONE_DECIMAL + flatnessDecimal * targetBalance - flatnessDecimal * balance; uint256 numeratorDecimal = Math.mulDiv(balance * tokensOutDecimal, largeTermDecimal, ONE_DECIMAL); uint256 denominator = targetBalance * targetBalance; return numeratorDecimal / denominator; } else { return tokensOutDecimal; } } function applyOutputSpread(uint256 balance, uint256 tokensOutDecimal, uint256 targetBalance) internal pure returns (uint256) { return applyOutputSpread(balance, tokensOutDecimal, targetBalance, ONE_DECIMAL); } /// @dev Calculate the amount of tokensOut given the amount of tokensMinted. /// This code is generic with respect to how many outcomes have prices. /// @param tokensMinted amount of tokens minted that we are trying to exchange /// @param indexOut the index of the outcome token we are trying to buy /// @param targetBalance the target balance of each outcome token. We assume /// equal target balance is optimal, so it can be represented by a single /// value rather than an array. All token balances should ideally equal this /// value /// @param collateralBalance Extra collateral available to mint more tokens /// @param balances The current balances of each outcome token in the pool /// @param fairPriceDecimals normalized prices for each outcome token /// provided externally. Any missing trailing prices are assumed to be 0. /// @return tokensOut how many tokens are swapped for the other minted tokens /// @return newPoolValue given the fair prices, what is the overall pool value after the exchange function calcBuyAmountV3( uint256 tokensMinted, uint256 indexOut, uint256 targetBalance, uint256 collateralBalance, uint256[] memory balances, uint256[] memory fairPriceDecimals ) internal pure returns (uint256 tokensOut, uint256 newPoolValue) { // If balances is longer than fair prices, that implies some tokens are worth 0 (such as refund tokens). // They are inconsequential to the calculation here. if (fairPriceDecimals.length > balances.length) revert AmmErrors.BalancePriceLengthMismatch(); // Also implies that even if indexOut is within the length of balances, // if it is beyond the length of fairPrices, then the price of that // token is 0. Buying 0-price tokens through the AMM should not be // possible if (indexOut >= fairPriceDecimals.length) revert AmmErrors.InvalidOutcomeIndex(); if (targetBalance == 0) revert AmmErrors.NoLiquidityAvailable(); // High level overview: // 1. We exchange these tokens at a flat rate according to fairPrices. This ignores token balances. // 2. We apply an AMM curve on the output tokens, relative to a target balance uint256 tokensOutDecimal = 0; uint256 newPoolValueDecimal = 0; for (uint256 i = 0; i < fairPriceDecimals.length; i++) { if (i == indexOut) continue; // 1. flat exchange uint256 inputTokensDecimal = tokensMinted * ONE_DECIMAL; tokensOutDecimal += calcElementwiseFairAmount(inputTokensDecimal, fairPriceDecimals[i], fairPriceDecimals[indexOut]); newPoolValueDecimal += (balances[i] + collateralBalance + tokensMinted) * fairPriceDecimals[i]; } // 2. slippage for the out pool uint256 flatnessDecimal = calculateFlatness(fairPriceDecimals[indexOut]); tokensOutDecimal = applyOutputSlippage( balances[indexOut] + collateralBalance, tokensOutDecimal / ONE_DECIMAL, targetBalance, flatnessDecimal ); tokensOut = tokensOutDecimal / ONE_DECIMAL; newPoolValueDecimal += (balances[indexOut] + collateralBalance - tokensOut) * fairPriceDecimals[indexOut]; newPoolValue = newPoolValueDecimal.ceilDiv(ONE_DECIMAL); } /// @dev Calculate the current prices of all tokens, only with spread, and /// no slippage. This can be used on the frontend to compare the price /// impact of trade size. This code is generic with respect to how many /// outcomes have prices. /// @param targetBalance the target balance of each outcome token. We assume /// equal target balance is optimal, so it can be represented by a single /// value rather than an array. All token balances should ideally equal this /// value /// @param collateralBalance Extra collateral available to mint more tokens /// @param balances The current balances of each outcome token in the pool /// @param fairPriceDecimals normalized prices for each outcome token /// provided externally. Any missing trailing prices are assumed to be 0. /// @return spontaneousPriceDecimals the modified prices of each token that /// include the spread. Will not sum to ONE_DECIMAL. function calcSpontaneousPricesV3( uint256 targetBalance, uint256 collateralBalance, uint256[] memory balances, uint256[] memory fairPriceDecimals ) internal pure returns (uint256[] memory spontaneousPriceDecimals) { if (fairPriceDecimals.length > balances.length) revert AmmErrors.BalancePriceLengthMismatch(); if (targetBalance == 0) revert AmmErrors.NoLiquidityAvailable(); spontaneousPriceDecimals = new uint256[](fairPriceDecimals.length); uint256 tokensInDecimal = ONE_DECIMAL; for (uint256 indexOut = 0; indexOut < spontaneousPriceDecimals.length; indexOut++) { // Calculate the spontaneous price for each outcome // Can be calculated by exchanging ONE_DECIMAL tokens at the // spontaneous price to get number of tokens out. Then the // reciprocal is the price uint256 balanceOut = balances[indexOut] + collateralBalance; uint256 tokensOutDecimal = 0; for (uint256 indexIn = 0; indexIn < fairPriceDecimals.length; indexIn++) { if (indexOut == indexIn) continue; // 1. flat exchange tokensOutDecimal += calcElementwiseFairAmount(tokensInDecimal, fairPriceDecimals[indexIn], fairPriceDecimals[indexOut]); } // 2. spread for the out pool uint256 flatnessDecimal = calculateFlatness(fairPriceDecimals[indexOut]); tokensOutDecimal = applyOutputSpread(balanceOut, tokensOutDecimal, targetBalance, flatnessDecimal); // To get the price, need to consider total tokens acquired during a purchase. // Typically tokens are split among all outcomes, and the unwanted // ones are exchanged for tokensOut. The total at the end of output // tokens also include the tokensIn amount from the split uint256 tokensBoughtDecimal = tokensOutDecimal + tokensInDecimal; spontaneousPriceDecimals[indexOut] = (tokensInDecimal * ONE_DECIMAL) / tokensBoughtDecimal; } } /// @dev describes operations to be done with respect to parent funding in /// order to maintain the right amount of reserves locally vs in the parent struct ParentOperations { uint256 collateralToRequestFromParent; uint256 collateralToReturnToParent; uint256 sharesToBurnOfParent; } struct TargetContext { /// @dev target the target balance used by all AMM calculations uint256 target; /// @dev all collateral available to be used to mint tokens, including that from the parent uint256 globalReserves; uint256[] balances; } /// @dev Return the index into the balance array where the refund outcome is. /// Documents the assumption in one place. function getRefundIndex(uint256[] memory outcomeArray) internal pure returns (uint256 refundIndex) { refundIndex = outcomeArray.length - 1; } function getRefundIndex(TargetContext memory targetContext) internal pure returns (uint256) { return getRefundIndex(targetContext.balances); } struct BuyContext { uint256 investmentMinusFees; uint256 tokensExchanged; uint256 newPoolValue; uint256 refund; } /// @dev Calculate how the state of the Amm Pool should change as a result /// of a buy order. This algorithm assumes a few more things than others in /// this file: /// - There is a parent pool from which we can request collateral, or return /// any excess /// - Besides buying a particular priced outcome, we are also taking care of /// a mutually exclusive refund outcome /// - The refund outcome is assumed to be the last index in the balances array /// @param indexOut the index of the bought token /// @param targetContext the current state of the pool - token balances, /// reserves, and value target. This is modified in place to reflect the /// state after the fact /// @param buyContext the information from the buy order - how much was paid, and how much was received /// @param parentShares how many parent shares exist (assumed that ALL shares are parent shares) /// @return outcomeTokensBought the total amount of tokens the buyer should receive /// @return tokensToMint how many tokens should be minted across all outcomes to fulfil the order /// @return parentOps requests and returns of collateral to a parent pool function calcMarketPoolChanges( uint256 indexOut, uint256 parentShares, TargetContext memory targetContext, BuyContext memory buyContext ) internal pure returns (uint256 outcomeTokensBought, uint256 tokensToMint, ParentOperations memory parentOps) { parentOps = ParentOperations(0, 0, 0); uint256 investmentMinusFees = buyContext.investmentMinusFees; // Last index is assumed to be the refund outcome uint256 refundIndex = getRefundIndex(targetContext); { outcomeTokensBought = buyContext.tokensExchanged + investmentMinusFees; uint256 refundTokensToMint = buyContext.refund.subClamp(targetContext.balances[refundIndex]); uint256 outcomeTokensToMint = outcomeTokensBought.subClamp(targetContext.balances[indexOut]); tokensToMint = Math.max(refundTokensToMint, outcomeTokensToMint); } // check if we don't have enough tokens, or too many if (tokensToMint >= investmentMinusFees) { unchecked { parentOps.collateralToRequestFromParent = tokensToMint - investmentMinusFees; } } else { // In this case all parent funding is tied up in tokens. The // leftover collateral from the buyer's investment is distributed // back to the parent. Any shares owned by other accounts (due to // removing liquidity in the form of child chares), do not have a // claim on any collateral, only tokens. This is assymetric on // purpose. // - Less complex, less gas cost // - Parent pool is main funder of collateral. Other accounts can // remove liquidity in the form of risk (pure tokens) if they want it. // parent is eligible to get all of leftover collateral uint256 investmentLeftOver; unchecked { investmentLeftOver = investmentMinusFees - tokensToMint; } // if any individual funders removed liquidity in terms of child // shares, they should have immediately been ejected and given // tokens directly. No individual funder shares should be lingering assert(parentShares > 0); uint256 tokenAndLocalReservesValue = (buyContext.newPoolValue - targetContext.globalReserves); parentOps.collateralToReturnToParent = investmentLeftOver; // number of shares to return depends on proportion of the collateral we are returning to value in market parentOps.sharesToBurnOfParent = (investmentLeftOver * parentShares) / tokenAndLocalReservesValue; } // Update TargetContext so it reflects the new state of the market targetContext.globalReserves = targetContext.globalReserves + investmentMinusFees - tokensToMint; for (uint256 i = 0; i < targetContext.balances.length; i++) { targetContext.balances[i] += tokensToMint; } targetContext.balances[indexOut] -= outcomeTokensBought; targetContext.balances[refundIndex] -= buyContext.refund; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IConditionalTokensV1_2 } from "../conditions/IConditionalTokensV1_2.sol"; import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; struct MarketAddressParams { IConditionalTokensV1_2 conditionalTokens; IERC20Metadata collateralToken; address parentPool; address priceOracle; address conditionOracle; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { ClampedMath } from "../Math.sol"; import { FundingErrors } from "./FundingErrors.sol"; library FundingMath { using ClampedMath for uint256; using Math for uint256; uint256 internal constant SHARE_PRECISION_DECIMALS = 4; uint256 internal constant SHARE_PRECISION_OFFSET = 10 ** SHARE_PRECISION_DECIMALS; /// @dev We always try to keep the pools balanced. There are never any /// "sendBackAmounts" like in a typical constant product AMM where the /// balances need to be maintained to determine the prices. We want to /// use all the available collateral for liquidity no matter what the /// probabilities of the outcomes are. /// @param collateralAdded how much collateral the funder is adding to the pool /// @param totalShares the current number of liquidity pool shares in circulation /// @param poolValue total sum of value of all tokens /// @return sharesMinted how many liquidity pool shares should be minted function calcFunding(uint256 collateralAdded, uint256 totalShares, uint256 poolValue) internal pure returns (uint256 sharesMinted) { // To prevent inflation attack. See articles and reference implementation: // https://mixbytes.io/blog/overview-of-the-inflation-attack // https://docs.openzeppelin.com/contracts/4.x/erc4626#defending_with_a_virtual_offset // https://github.com/boringcrypto/YieldBox/blob/master/contracts/YieldBoxRebase.sol#L24-L29 poolValue++; totalShares += SHARE_PRECISION_OFFSET; assert(totalShares > 0); // mint LP tokens proportional to how much value the new investment // brings to the pool sharesMinted = (collateralAdded * totalShares).ceilDiv(poolValue); } /// @dev Calculate how much of an asset in the liquidity pool to return to a funder. /// @param sharesToBurn how many liquidity pool shares a funder wants to burn /// @param totalShares the current number of liquidity pool shares in circulation /// @param balance number of an asset in the pool /// @return sendAmount how many asset tokens to give back to funder function calcReturnAmount(uint256 sharesToBurn, uint256 totalShares, uint256 balance) internal pure returns (uint256 sendAmount) { if (sharesToBurn > totalShares) revert FundingErrors.InvalidBurnAmount(); if (sharesToBurn == 0) return sendAmount; sendAmount = (balance * sharesToBurn) / totalShares; } /// @dev Calculate how much of the assets in the liquidity pool to return to a funder. /// @param sharesToBurn how many liquidity pool shares a funder wants to burn /// @param totalShares the current number of liquidity pool shares in circulation /// @param balances number of each asset in the pool /// @return sendAmounts how many asset tokens to give back to funder function calcReturnAmounts(uint256 sharesToBurn, uint256 totalShares, uint256[] memory balances) internal pure returns (uint256[] memory sendAmounts) { if (sharesToBurn > totalShares) revert FundingErrors.InvalidBurnAmount(); sendAmounts = new uint256[](balances.length); if (sharesToBurn == 0) return sendAmounts; for (uint256 i = 0; i < balances.length; i++) { sendAmounts[i] = (balances[i] * sharesToBurn) / totalShares; } } /// @dev Calculate how much to reduce the cost basis due to shares being burnt /// @param funderShares how many liquidity pool shares a funder currently owns /// @param sharesToBurn how many liquidity pool shares a funder currently owns /// @param funderCostBasis how much collateral was spent acquiring the funder's liquidity pool shares /// @return costBasisReduction the amount by which to reduce the costbasis for the funder function calcCostBasisReduction(uint256 funderShares, uint256 sharesToBurn, uint256 funderCostBasis) internal pure returns (uint256 costBasisReduction) { if (sharesToBurn > funderShares) revert FundingErrors.InvalidBurnAmount(); costBasisReduction = funderShares == 0 ? 0 : (funderCostBasis * sharesToBurn) / funderShares; } /// @dev Calculate how many shares to burn for an asset, so that how many /// parent shares are removed are not a larger proportion of funder's /// shares, than the proportion of the asset value among other assets. /// /// i.e. /// ((funderSharesRemovedAsAsset + sharesBurnt) / funderTotalShares) /// <= /// (assetValue / totalValue) /// /// @param funderTotalShares Total parent shares owned and removed by funder /// @param sharesToBurn How many funder shares we're trying to burn /// @param funderSharesRemovedAsAsset quantity of shares already removed as the asset /// @param assetValue current value of the asset /// @param totalValue the total value to compare the asset value to. The /// ratio of asset value to this total is what sharesBurnt should not exceed /// @return sharesBurnt quantity of shares that can be burnt given the above restrictions function calcMaxParentSharesToBurnForAsset( uint256 funderTotalShares, uint256 sharesToBurn, uint256 funderSharesRemovedAsAsset, uint256 assetValue, uint256 totalValue ) internal pure returns (uint256 sharesBurnt) { uint256 maxShares = ((funderTotalShares * assetValue).ceilDiv(totalValue)).subClamp(funderSharesRemovedAsAsset); sharesBurnt = Math.min(sharesToBurn, maxShares); if (sharesBurnt > 0) { // This is a re-arrangement of the inequality given in the // description. It only applies when we are trying to give out some // shares. If sharesBurnt is 0, that means we've already exceeded // how many shares we can safely burn, so the inequality is // violated. // The -1 is due to the rounding up in ceilDiv above, used to // prevent never being able to burn the last remaining share assert(((funderSharesRemovedAsAsset + sharesBurnt - 1) * totalValue) < (assetValue * funderTotalShares)); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; // Note on libraries. If any functions are not `internal`, then contracts that // use the libraries, must be linked. library ArrayMath { function sum(uint256[] memory values) internal pure returns (uint256) { uint256 result = 0; for (uint256 i = 0; i < values.length; i++) { result += values[i]; } return result; } } /// @dev Math with saturation/clamping for overflow/underflow handling library ClampedMath { /// @dev min(upper, max(lower, x)) function clampBetween(uint256 x, uint256 lower, uint256 upper) internal pure returns (uint256) { unchecked { return x < lower ? lower : (x > upper ? upper : x); } } /// @dev max(0, a - b) function subClamp(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return a > b ? a - b : 0; } } /// @dev min(type(uint256).max, max(0, a + b)) function addClamp(uint256 a, int256 b) internal pure returns (uint256) { unchecked { if (b < 0) { // The absolute value of type(int256).min is not representable // in int256, so have to dance about with the + 1 uint256 positiveB = uint256(-(b + 1)) + 1; return (a > positiveB) ? (a - positiveB) : 0; } else { return type(uint256).max - a > uint256(b) ? a + uint256(b) : type(uint256).max; } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IERC1155Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC1155/IERC1155Upgradeable.sol"; import { ConditionID, QuestionID } from "./CTHelpers.sol"; import { ConditionalTokensErrors } from "./ConditionalTokensErrors.sol"; /// @title Events emitted by conditional tokens /// @dev Minimal interface to be used for blockchain indexing (e.g subgraph) interface IConditionalTokensEvents { /// @dev Emitted upon the successful preparation of a condition. /// @param conditionId The condition's ID. This ID may be derived from the /// other three parameters via ``keccak256(abi.encodePacked(oracle, /// questionId, outcomeSlotCount))``. /// @param oracle The account assigned to report the result for the prepared condition. /// @param questionId An identifier for the question to be answered by the oracle. /// @param outcomeSlotCount The number of outcome slots which should be used /// for this condition. Must not exceed 256. event ConditionPreparation( ConditionID indexed conditionId, address indexed oracle, QuestionID indexed questionId, uint256 outcomeSlotCount ); event ConditionResolution( ConditionID indexed conditionId, address indexed oracle, QuestionID indexed questionId, uint256 outcomeSlotCount, uint256[] payoutNumerators ); /// @dev Emitted when a position is successfully split. event PositionSplit( address indexed stakeholder, IERC20 collateralToken, ConditionID indexed conditionId, uint256 amount ); /// @dev Emitted when positions are successfully merged. event PositionsMerge( address indexed stakeholder, IERC20 collateralToken, ConditionID indexed conditionId, uint256 amount ); /// @notice Emitted when a subset of outcomes are redeemed for a condition event PayoutRedemption( address indexed redeemer, IERC20 indexed collateralToken, ConditionID conditionId, uint256[] indices, uint256 payout ); } interface IConditionalTokens is IERC1155Upgradeable, IConditionalTokensEvents, ConditionalTokensErrors { function prepareCondition(address oracle, QuestionID questionId, uint256 outcomeSlotCount) external returns (ConditionID); function reportPayouts(QuestionID questionId, uint256[] calldata payouts) external; function batchReportPayouts( QuestionID[] calldata questionIDs, uint256[] calldata payouts, uint256[] calldata outcomeSlotCounts ) external; function splitPosition(IERC20 collateralToken, ConditionID conditionId, uint256 amount) external; function mergePositions(IERC20 collateralToken, ConditionID conditionId, uint256 amount) external; function redeemPositionsFor( address receiver, IERC20 collateralToken, ConditionID conditionId, uint256[] calldata indices, uint256[] calldata quantities ) external returns (uint256); function redeemAll(IERC20 collateralToken, ConditionID[] calldata conditionIds, uint256[] calldata indices) external; function redeemAllOf( address ownerAndReceiver, IERC20 collateralToken, ConditionID[] calldata conditionIds, uint256[] calldata indices ) external returns (uint256 totalPayout); function balanceOfCondition(address account, IERC20 collateralToken, ConditionID conditionId) external view returns (uint256[] memory); function isResolved(ConditionID conditionId) external view returns (bool); function getPositionIds(IERC20 collateralToken, ConditionID conditionId) external view returns (uint256[] memory); // TODO: This should be ok to add to the first interface, since we currently don't use the interface id directly anywhere, // and the very first version of the contract did support this function. /// @dev number of outcome slots in a condition function getOutcomeSlotCount(ConditionID conditionId) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; /// @dev Functions to deal with 16bit prices packed into `bytes`. /// In prediction markets, prices are within the range [0-1]. As such, arbitrary /// magnitude and precision are not necessary. By restricting prices to be fixed /// point integers between 0 and 1e4, we get: /// - Prices fit in 16 bits /// - Can be easily renormalized to 1e18 via a multiplier /// /// The 16bit prices are packed back to back and encoded in big-endian format. /// /// Some notes: /// /// Packing/unpacking is done manually and not via solidity's uint16[]. /// uint16[] arrays are still encoded with all the padding. Additionally, /// working directly with uint16 data types is less efficient than uint256, due /// to bit shifting and masking that is implicitly done library PackedPrices { using Math for uint256; /// @dev a divisor that fits in 16 bits, and easily divides into 1e18 uint256 internal constant DIVISOR = 1e4; /// @dev divisor for majority of decimal calculations uint256 internal constant ONE_DECIMAL = 1e18; /// @dev We store packed prices in 16 bits with a divisor of 1e4. AMM math /// relies on prices having divisor of 1e18. We can go directly from one to /// the other by multiplying by 1e14. uint256 internal constant DECIMAL_CONVERSION_FACTOR = 1e14; /// @dev How many bits to shift to convert between big-endian uint16 and uint256 uint256 internal constant SHIFT_BITS = 30 * 8; /// @dev Given a packed price byte array, unpack into a decimal price array with 1e18 divisor /// @param packedPrices packed byte array /// @return priceDecimals unpacked price array of prices normalized to 1e18 function toPriceDecimals(bytes memory packedPrices) internal pure returns (uint256[] memory priceDecimals) { unchecked { uint256 length = packedPrices.length / 2; priceDecimals = new uint256[](length); for (uint256 i; i < length; i++) { uint256 chunk; uint256 offset = 32 + i * 2; assembly ("memory-safe") { chunk := mload(add(packedPrices, offset)) } priceDecimals[i] = (chunk >> SHIFT_BITS) * DECIMAL_CONVERSION_FACTOR; } } } /// @dev Given a packed price byte array in storage, unpack into a decimal price array with 1e18 divisor /// @param packedPrices packed byte array storage pointer /// @return priceDecimals unpacked price array of prices normalized to 1e18 function toPriceDecimalsFromStorage(bytes storage packedPrices) internal pure returns (uint256[] memory) { // Much easier to copy the byte array into memory first, and then // perform the conversion from memory array, than doing it directly from // storage. // This is because the storage load instruction `SLOAD` costs 200 gas, // while the memory load instruction `MLOAD` costs only 3. The // drastically simpler code that loads each integer one at a time would // be extremely costly with SLOAD, and would require a different // algorithm that amounts to copying into memory first to minimize SLOAD // instructions. return toPriceDecimals(packedPrices); } /// @dev Given an array of integers, packs them into a byte array of 16bit values. /// Integers are taken as-is, with no re-normalization. /// @param prices array of integers less than or equal to type(uint16).max . Otherwise truncation will occur /// @param divisor what to divide prices by before packing /// @return packedPrices packed byte array function toPackedPrices(uint256[] memory prices, uint256 divisor) internal pure returns (bytes memory packedPrices) { unchecked { uint256 length = prices.length; // set the size of bytes array packedPrices = new bytes(length * 2); for (uint256 i; i < length; i++) { uint256 adjustedPrice = prices[i] / divisor; assert(adjustedPrice <= type(uint16).max); uint256 chunk = adjustedPrice << SHIFT_BITS; uint256 offset = 32 + i * 2; assembly { mstore(add(packedPrices, offset), chunk) } } } } /// @dev Sums the values in the packed price byte array /// @param packedPrices the byte array that encodes the packed prices /// @return result the sum of the decoded prices function sum(bytes memory packedPrices) internal pure returns (uint256 result) { unchecked { uint256 length = packedPrices.length / 2; for (uint256 i; i < length; i++) { uint256 chunk; uint256 offset = 32 + i * 2; assembly ("memory-safe") { chunk := mload(add(packedPrices, offset)) } result += chunk >> SHIFT_BITS; } } } function arrayLength(bytes memory packedPrices) internal pure returns (uint256) { return packedPrices.length / 2; } function valueAtIndex(bytes memory packedPrices, uint256 index) internal pure returns (uint256) { uint256 chunk; uint256 offset = 32 + index * 2; assembly ("memory-safe") { chunk := mload(add(packedPrices, offset)) } return (chunk >> SHIFT_BITS); } // TODO: potentially optimize reading directly from storage }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; type QuestionID is bytes32; type ConditionID is bytes32; type CollectionID is bytes32; library CTHelpers { /// @dev Constructs a condition ID from an oracle, a question ID, and the /// outcome slot count for the question. /// @param oracle The account assigned to report the result for the prepared condition. /// @param questionId An identifier for the question to be answered by the oracle. /// @param outcomeSlotCount The number of outcome slots which should be used /// for this condition. Must not exceed 256. function getConditionId(address oracle, QuestionID questionId, uint256 outcomeSlotCount) internal pure returns (ConditionID) { assert(outcomeSlotCount < 257); // `<` uses less gas than `<=` return ConditionID.wrap(keccak256(abi.encodePacked(oracle, questionId, outcomeSlotCount))); } /// @dev Constructs an outcome collection ID /// @param conditionId Condition ID of the outcome collection /// @param index outcome index function getCollectionId(ConditionID conditionId, uint256 index) internal pure returns (CollectionID) { return CollectionID.wrap(keccak256(abi.encodePacked(conditionId, index))); } /// @dev Constructs a position ID from a collateral token and an outcome /// collection. These IDs are used as the ERC-1155 ID for this contract. /// @param collateralToken Collateral token which backs the position. /// @param collectionId ID of the outcome collection associated with this position. function getPositionId(IERC20 collateralToken, CollectionID collectionId) internal pure returns (uint256) { return uint256(keccak256(abi.encodePacked(collateralToken, collectionId))); } /// @dev Constructs all position ID in a condition, for a collateral token. /// These IDs are used as the ERC-1155 ID for the ConditionalTokens contract. /// @param collateralToken Collateral token which backs the position. /// @param conditionId ID of the condition associated with all positions /// @param outcomeSlotCount number of outcomes in the condition function getPositionIds(IERC20 collateralToken, ConditionID conditionId, uint256 outcomeSlotCount) internal pure returns (uint256[] memory positionIds) { positionIds = new uint256[](outcomeSlotCount); for (uint256 i = 0; i < outcomeSlotCount; i++) { positionIds[i] = getPositionId(collateralToken, getCollectionId(conditionId, i)); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20Upgradeable.sol"; import "./extensions/IERC20MetadataUpgradeable.sol"; import "../../utils/ContextUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[45] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IFundingPoolV1 } from "./IFundingPoolV1.sol"; /// @dev An extension to IFundingPoolV1 that adds more methods to inspect cost basis, interface IFundingPoolV1_1 is IFundingPoolV1 { /// @dev How much collateral was spent by a funder to obtain their current shares function getFunderCostBasis(address funder) external returns (uint256); /// @dev How much collateral was spent by all funders to obtain their current shares function getTotalFunderCostBasis() external returns (uint256); /// @dev Current estimated value in collateral of the entire pool function getPoolValue() external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC165Upgradeable } from "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol"; interface ChildFundingPoolErrors { error NotAParentPool(address parentPool); } interface ChildFundingPoolEvents { event ParentPoolAdded(address indexed parentPool); } /// @dev Interface for a funding pool that can be added as a child to a Parent Funding pool interface IChildFundingPoolV1 is IERC165Upgradeable, ChildFundingPoolEvents, ChildFundingPoolErrors { function getParentPool() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC165Upgradeable } from "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol"; import { ContextUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; interface ParentFundingPoolErrors { /// @dev Occurs when a child pool does not support the necessary interfaces error NotAChildPool(address childPool); /// @dev Occurs when a child pool is not approved to perform the operation error ChildPoolNotApproved(address childPool); /// @dev Occurs when batch operations have mismatching array lengths error InvalidBatchLength(); } interface ParentFundingPoolEvents { /// @dev A child pool approval was added or removed event ChildPoolApproval(address indexed childPool, uint256 approved); /// @dev Limit of how much can be requested has changed event RequestLimitChanged(uint256 limit); /// @dev A child pool has requested some funds, and the parent gives it. The /// value locked into the child is exactly equal to the collateralGiven event FundingGiven(address indexed childPool, uint256 collateralGiven); /// @dev A child pool has returned some funding, unlocking some value /// @param childPool the child pool that borrowed the funds /// @param collateralReturned quantity of collateral given back to the pool /// @param valueUnlocked due to profit/loss, collateral returned may not /// equal in value to what was originally given. valueUnlocked corresponds /// to the portion of original collateral that is returned event FundingReturned(address indexed childPool, uint256 collateralReturned, uint256 valueUnlocked); } /// @dev Interface for a FundingPool that allows child FundingPools to request/return funds interface IParentFundingPoolV1 is IERC165Upgradeable, ParentFundingPoolEvents, ParentFundingPoolErrors { /// @dev childPool should support IFundingPoolV1 interface function setApprovalForChild(address childPool, uint256 approval) external; /// @dev Called by an approved child pool, to request collateral /// NOTE: assumes msg.sender supports IFundingPool that is approved /// @param collateralRequested how much collateral is requested by the childPool /// @return collateralAdded Actual amount given (which may be lower than collateralRequested) /// @return sharesMinted How many child shares were given due to the funding function requestFunding(uint256 collateralRequested) external returns (uint256 collateralAdded, uint256 sharesMinted); /// @dev Notify parent after voluntarily returning back some collateral, and burning corresponding shares /// @param collateralReturned how much collateral funding was transferred from child to parent /// @param sharesBurnt how many child shares were burnt as a result function fundingReturned(uint256 collateralReturned, uint256 sharesBurnt) external; /// @dev Notify parent after voluntarily returning back some fees /// @param fees how much fees (in collateral) was transferred from child to parent function feesReturned(uint256 fees) external; /// @dev What is the maximum amount of collateral a child can request from the parent function getApprovalForChild(address childPool) external view returns (uint256 approval); /// @dev See how much funding is available for a particular child pool. /// Takes into account how much has already been consumed from the approval, /// and how much collateral is available in the pool. /// @param childPool address of the childPool /// @return availableFunding how much collateral can be requested, that takes into account any gains or losses /// @return targetFunding The target funding amount that can be requested, without gains or losses function getAvailableFunding(address childPool) external view returns (uint256 availableFunding, uint256 targetFunding); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.2) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface. */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) && !supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * * Some precompiled contracts will falsely indicate support for a given interface, so caution * should be exercised when using this function. * * Interface identification is specified in ERC-165. */ function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; /// @dev Simple Access Control, that has an admin role that administers an /// executor role. The intent is to have a multi-sig or other mechanism to be /// the admin, and be able to grant/revoke accounts as executors. abstract contract AdminExecutorAccessUpgradeable is AccessControlUpgradeable, PausableUpgradeable { bytes32 public constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE"); modifier onlyAdmin() { checkAdmin(_msgSender()); _; } modifier onlyExecutor() { checkExecutor(_msgSender()); _; } // solhint-disable-next-line func-name-mixedcase function __AdminExecutor_init(address admin, address startingExecutor) internal onlyInitializing { __AccessControl_init(); __Pausable_init(); __AdminExecutor_init_unchained(admin, startingExecutor); } // solhint-disable-next-line func-name-mixedcase function __AdminExecutor_init_unchained(address admin, address startingExecutor) internal onlyInitializing { _grantRole(DEFAULT_ADMIN_ROLE, admin); // DEFAULT_ADMIN_ROLE already is admin for executor by default, so no need for _setRoleAdmin if (startingExecutor != address(0x0)) { _grantRole(EXECUTOR_ROLE, startingExecutor); } } function pause() public onlyAdmin { _pause(); } function unpause() public onlyAdmin { _unpause(); } /// @dev Check is a particular account has executor permissions. Reverts if not the case. /// @param account the account to check function checkExecutor(address account) public view { _checkRole(EXECUTOR_ROLE, account); } function checkAdmin(address account) public view { _checkRole(DEFAULT_ADMIN_ROLE, account); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { AmmErrors } from "./AmmErrors.sol"; import { FundingErrors } from "../funding/FundingErrors.sol"; interface MarketErrors is AmmErrors, FundingErrors { error MarketHalted(); error MarketUndecided(); // Buy error InvalidInvestmentAmount(); error MinimumBuyAmountNotReached(); error FeesConsumeInvestment(); // Sell error InvalidReturnAmount(); error MaximumSellAmountExceeded(); error InvestmentDrainsPool(); error OperationNotSupported(); error CanOnlyBeFundedByParent(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; import { FundingErrors } from "./FundingErrors.sol"; interface FundingPoolEvents { /// @notice Collateral is added to the liquidity pool /// @param sender the account that initiated and supplied the collateral for the funding /// @param funder the account that receives the liquidity pool shares /// @param collateralAdded the quantity of collateral supplied to the pool /// @param sharesMinted the quantity of liquidity pool shares created as sa result of the funding event FundingAdded(address indexed sender, address indexed funder, uint256 collateralAdded, uint256 sharesMinted); /// @notice Funding is removed as a mix of tokens and collateral /// @param funder the owner of liquidity pool shares /// @param collateralRemoved the quantity of collateral removed from the pool proportional to funder's shares /// @param tokensRemoved the quantity of tokens removed from the pool proportional to funder's shares. Can be empty /// @param sharesBurnt the quantity of liquidity pool shares burnt event FundingRemoved( address indexed funder, uint256 collateralRemoved, uint256[] tokensRemoved, uint256 sharesBurnt ); /// @notice Funding is removed as a specific token, referred to by an id /// @param funder the owner of liquidity pool shares /// @param tokenId an id that identifies a single asset token in the pool. Up to the pool to decide the meaning of the id /// @param tokensRemoved the quantity of a token removed from the pool /// @param sharesBurnt the quantity of liquidity pool shares burnt event FundingRemovedAsToken( address indexed funder, uint256 indexed tokenId, uint256 tokensRemoved, uint256 sharesBurnt ); /// @notice Some portion of collateral was withdrawn for fee purposes event FeesWithdrawn(address indexed funder, uint256 collateralRemovedFromFees); /// @notice Some portion of collateral was retained for fee purposes event FeesRetained(uint256 collateralAddedToFees); } /// @dev A funding pool deals with 3 different assets: /// - collateral with which to make investments (ERC20 tokens of general usage, e.g. USDT, USDC, DAI, etc.) /// - shares which represent the stake in the fund (ERC20 tokens minted and burned by the funding pool) /// - tokens that are the actual investments (e.g. ERC1155 conditional tokens) interface IFundingPoolV1 is IERC20Upgradeable, FundingErrors, FundingPoolEvents { /// @notice Funds the market with collateral from the sender /// @param collateralAdded Amount of funds from the sender to transfer to the market function addFunding(uint256 collateralAdded) external returns (uint256 sharesMinted); /// @notice Funds the market on behalf of receiver. /// @param receiver Account that receives LP tokens. /// @param collateralAdded Amount of funds from the sender to transfer to the market function addFundingFor(address receiver, uint256 collateralAdded) external returns (uint256 sharesMinted); /// @notice Withdraws the fees from a particular liquidity provider. /// @param funder Account address to withdraw its available fees. function withdrawFees(address funder) external returns (uint256 collateralRemovedFromFees); /// @notice Returns the amount of fee in collateral to be withdrawn by the liquidity providers. /// @param account Account address to check for fees available. function feesWithdrawableBy(address account) external view returns (uint256 collateralFees); /// @notice How much collateral is available that is not set aside for fees function reserves() external view returns (uint256 collateral); /// @notice Returns the current collected fees on this market. function collectedFees() external view returns (uint256 collateralFees); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface UpdateFairPricesEvents { event MarketPricesUpdated(uint256[] fairPriceDecimals); event MarketMinPriceUpdated(uint128 minPriceDecimal); } interface IUpdateFairPrices is UpdateFairPricesEvents { function updateFairPrices(uint256[] calldata fairPriceDecimals) external; function updateMinPrice(uint128 minPriceDecimal) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface AmmErrors { error InvalidOutcomeIndex(); error NoLiquidityAvailable(); error BalancePriceLengthMismatch(); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface FundingErrors { error InvalidFundingAmount(); error InvalidBurnAmount(); error InvalidReceiverAddress(); error PoolValueZero(); /// @dev Fee is is or exceeds 100% error InvalidFee(); /// @dev Trying to retain fees that exceed the current reserves error FeesExceedReserves(); /// @dev Trying to unlock more fees than currently collected error FeesExceedCollected(); /// @dev Funding is so large, that it may lead to overflow errors in future /// actions error ExcessiveFunding(); /// @dev Collateral ERC20 decimals exceed 18, leading to potential overflows error ExcessiveCollateralDecimals(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165Upgradeable.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155Upgradeable is IERC165Upgradeable { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface ConditionalTokensErrors { error ConditionAlreadyPrepared(); error PayoutAlreadyReported(); error PayoutsAreAllZero(); error InvalidOutcomeSlotCountsArray(); error InvalidPayoutArray(); error ResultNotReceivedYet(); error InvalidIndex(); error NoPositionsToRedeem(); error ConditionNotFound(); error InvalidAmount(); error InvalidOutcomeSlotsAmount(); error InvalidQuantities(); error InvalidPrices(); error InvalidConditionOracle(address conditionOracle); error MustBeCalledByOracle(); error InvalidHaltTime(); /// @dev using unapproved ERC20 token with protocol error InvalidERC20(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol) pragma solidity ^0.8.0; import "./IAccessControlUpgradeable.sol"; import "../utils/ContextUpgradeable.sol"; import "../utils/StringsUpgradeable.sol"; import "../utils/introspection/ERC165Upgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable { function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `_msgSender()` is missing `role`. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", StringsUpgradeable.toHexString(account), " is missing role ", StringsUpgradeable.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * May emit a {RoleGranted} event. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControlUpgradeable { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/MathUpgradeable.sol"; /** * @dev String operations. */ library StringsUpgradeable { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = MathUpgradeable.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, MathUpgradeable.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@prb/math/=lib/prb-math/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "upgrade-scripts/=lib/upgrade-scripts/src/", "UDS/=lib/upgrade-scripts/lib/UDS/src/", "@prb/test/=lib/prb-math/node_modules/@prb/test/", "futils/=lib/upgrade-scripts/lib/UDS/lib/futils/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "prb-math/=lib/prb-math/src/" ], "optimizer": { "enabled": true, "runs": 600 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
[{"inputs":[{"internalType":"contract FeeDistributor","name":"feeDistributor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BalancePriceLengthMismatch","type":"error"},{"inputs":[],"name":"CanOnlyBeFundedByParent","type":"error"},{"inputs":[],"name":"ConditionAlreadyPrepared","type":"error"},{"inputs":[],"name":"ConditionNotFound","type":"error"},{"inputs":[],"name":"ExcessiveCollateralDecimals","type":"error"},{"inputs":[],"name":"ExcessiveFunding","type":"error"},{"inputs":[],"name":"FeesConsumeInvestment","type":"error"},{"inputs":[],"name":"FeesExceedCollected","type":"error"},{"inputs":[],"name":"FeesExceedReserves","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidBurnAmount","type":"error"},{"inputs":[{"internalType":"address","name":"conditionOracle","type":"address"}],"name":"InvalidConditionOracle","type":"error"},{"inputs":[],"name":"InvalidERC20","type":"error"},{"inputs":[],"name":"InvalidFee","type":"error"},{"inputs":[],"name":"InvalidFundingAmount","type":"error"},{"inputs":[],"name":"InvalidHaltTime","type":"error"},{"inputs":[],"name":"InvalidIndex","type":"error"},{"inputs":[],"name":"InvalidInvestmentAmount","type":"error"},{"inputs":[],"name":"InvalidOutcomeIndex","type":"error"},{"inputs":[],"name":"InvalidOutcomeSlotCountsArray","type":"error"},{"inputs":[],"name":"InvalidOutcomeSlotsAmount","type":"error"},{"inputs":[],"name":"InvalidPayoutArray","type":"error"},{"inputs":[],"name":"InvalidPrices","type":"error"},{"inputs":[],"name":"InvalidQuantities","type":"error"},{"inputs":[],"name":"InvalidReceiverAddress","type":"error"},{"inputs":[],"name":"InvalidReturnAmount","type":"error"},{"inputs":[],"name":"InvestmentDrainsPool","type":"error"},{"inputs":[],"name":"MarketHalted","type":"error"},{"inputs":[],"name":"MarketUndecided","type":"error"},{"inputs":[],"name":"MaximumSellAmountExceeded","type":"error"},{"inputs":[],"name":"MinimumBuyAmountNotReached","type":"error"},{"inputs":[],"name":"MustBeCalledByOracle","type":"error"},{"inputs":[],"name":"NoLiquidityAvailable","type":"error"},{"inputs":[],"name":"NoPositionsToRedeem","type":"error"},{"inputs":[{"internalType":"address","name":"parentPool","type":"address"}],"name":"NotAParentPool","type":"error"},{"inputs":[],"name":"OperationNotSupported","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Convert_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp_InputTooBig","type":"error"},{"inputs":[],"name":"PayoutAlreadyReported","type":"error"},{"inputs":[],"name":"PayoutsAreAllZero","type":"error"},{"inputs":[],"name":"PoolValueZero","type":"error"},{"inputs":[],"name":"ResultNotReceivedYet","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"collateralAddedToFees","type":"uint256"}],"name":"FeesRetained","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"funder","type":"address"},{"indexed":false,"internalType":"uint256","name":"collateralRemovedFromFees","type":"uint256"}],"name":"FeesWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"funder","type":"address"},{"indexed":false,"internalType":"uint256","name":"collateralAdded","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesMinted","type":"uint256"}],"name":"FundingAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"funder","type":"address"},{"indexed":false,"internalType":"uint256","name":"collateralRemoved","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"tokensRemoved","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"sharesBurnt","type":"uint256"}],"name":"FundingRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"funder","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokensRemoved","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesBurnt","type":"uint256"}],"name":"FundingRemovedAsToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"outcomeIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"outcomeTokensBought","type":"uint256"}],"name":"MarketBuy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"minPriceDecimal","type":"uint128"}],"name":"MarketMinPriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"fairPriceDecimals","type":"uint256[]"}],"name":"MarketPricesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":false,"internalType":"uint256","name":"returnAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"outcomeIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"outcomeTokensSold","type":"uint256"}],"name":"MarketSell","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"spontaneousPrices","type":"uint256[]"}],"name":"MarketSpontaneousPrices","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"parentPool","type":"address"}],"name":"ParentPoolAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"ONE_DECIMAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"collateralAdded","type":"uint256"}],"name":"addFunding","outputs":[{"internalType":"uint256","name":"sharesMinted","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"collateralAdded","type":"uint256"}],"name":"addFundingFor","outputs":[{"internalType":"uint256","name":"sharesMinted","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"internalType":"uint256","name":"outcomeIndex","type":"uint256"},{"internalType":"uint256","name":"minOutcomeTokensToBuy","type":"uint256"}],"name":"buy","outputs":[{"internalType":"uint256","name":"outcomeTokensBought","type":"uint256"},{"internalType":"uint256","name":"feeAmount","type":"uint256"},{"internalType":"uint256[]","name":"spontaneousPrices","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"internalType":"uint256","name":"outcomeIndex","type":"uint256"},{"internalType":"uint256","name":"minOutcomeTokensToBuy","type":"uint256"},{"internalType":"uint256","name":"extraFeeDecimal","type":"uint256"},{"internalType":"FeeProfileID","name":"feeProfileId","type":"uint256"}],"name":"buyFor","outputs":[{"internalType":"uint256","name":"outcomeTokensBought","type":"uint256"},{"internalType":"uint256","name":"feeAmount","type":"uint256"},{"internalType":"uint256[]","name":"spontaneousPrices","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"internalType":"uint256","name":"outcomeIndex","type":"uint256"},{"internalType":"uint256","name":"minOutcomeTokensToBuy","type":"uint256"}],"name":"buyFor","outputs":[{"internalType":"uint256","name":"outcomeTokensBought","type":"uint256"},{"internalType":"uint256","name":"feeAmount","type":"uint256"},{"internalType":"uint256[]","name":"spontaneousPrices","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"},{"internalType":"uint256","name":"extraFeeDecimal","type":"uint256"}],"name":"calcBuyAmount","outputs":[{"internalType":"uint256","name":"outcomeTokensBought","type":"uint256"},{"internalType":"uint256","name":"feeAmount","type":"uint256"},{"internalType":"uint256[]","name":"spontaneousPrices","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"calcBuyAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"calcSellAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"collateralToken","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collectedFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"conditionId","outputs":[{"internalType":"ConditionID","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"conditionalTokens","outputs":[{"internalType":"contract IConditionalTokensV1_2","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feeDecimal","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"feesWithdrawableBy","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getFairPrices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"funder","type":"address"}],"name":"getFunderCostBasis","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getParentPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolBalances","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolValue","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSpontaneousPrices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTargetBalance","outputs":[{"components":[{"internalType":"uint256","name":"target","type":"uint256"},{"internalType":"uint256","name":"globalReserves","type":"uint256"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"}],"internalType":"struct AmmMath.TargetContext","name":"targetContext","type":"tuple"},{"internalType":"uint256[]","name":"fairPriceDecimals","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalFunderCostBasis","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"contract IConditionalTokensV1_2","name":"conditionalTokens","type":"address"},{"internalType":"contract IERC20Metadata","name":"collateralToken","type":"address"},{"internalType":"address","name":"parentPool","type":"address"},{"internalType":"address","name":"priceOracle","type":"address"},{"internalType":"address","name":"conditionOracle","type":"address"}],"internalType":"struct MarketAddressParams","name":"addresses","type":"tuple"},{"components":[{"internalType":"ConditionID","name":"conditionId","type":"bytes32"},{"internalType":"uint256","name":"fee","type":"uint256"}],"internalType":"struct MarketMaker.InitParams","name":"params","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isHalted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minInvestment","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"outcomeIndex","type":"uint256"}],"name":"positionId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"funders","type":"address[]"}],"name":"removeAllCollateralFunding","outputs":[{"internalType":"uint256","name":"totalSharesBurnt","type":"uint256"},{"internalType":"uint256","name":"totalCollateralRemoved","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"ownerAndReceiver","type":"address"},{"internalType":"uint256","name":"sharesToBurn","type":"uint256"}],"name":"removeCollateralFundingOf","outputs":[{"internalType":"uint256[]","name":"sendAmounts","type":"uint256[]"},{"internalType":"uint256","name":"collateralRemoved","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharesToBurn","type":"uint256"}],"name":"removeFunding","outputs":[{"internalType":"uint256","name":"collateral","type":"uint256"},{"internalType":"uint256[]","name":"sendAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserves","outputs":[{"internalType":"uint256","name":"collateral","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"returnAmount","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"sell","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"name":"updateFairPrices","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint128","name":"","type":"uint128"}],"name":"updateMinPrice","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"withdrawFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
60a06040523480156200001157600080fd5b506040516200615238038062006152833981016040819052620000349162000114565b6001600160a01b0381166080526200004b62000052565b5062000146565b600054610100900460ff1615620000bf5760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b60005460ff908116101562000112576000805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b6000602082840312156200012757600080fd5b81516001600160a01b03811681146200013f57600080fd5b9392505050565b608051615fe2620001706000396000818161273e01528181612a2b0152612ac30152615fe26000f3fe608060405234801561001057600080fd5b506004361061032b5760003560e01c806372441d54116101b2578063b2016bd4116100f9578063d2da4040116100a2578063e03031a61161007c578063e03031a6146106fc578063eb175b7e1461071d578063f23a6e6114610733578063f55c79d01461074657600080fd5b8063d2da40401461069f578063d3c9727c146106b0578063dd62ed3e146106c357600080fd5b8063bc197c81116100d3578063bc197c8114610658578063c7ff158414610684578063cc071c4f1461068c57600080fd5b8063b2016bd414610624578063b518d9a414610637578063b78d05f71461064a57600080fd5b80639003adfe1161015b578063a457c2d711610135578063a457c2d7146105eb578063a9059cbb146105fe578063ae3afc031461061157600080fd5b80639003adfe146105b957806395d89b41146105c25780639f2a2944146105ca57600080fd5b80637e11b31f1161018c5780637e11b31f146105625780638ab0c0b2146105905780638ac2c6801461059857600080fd5b806372441d541461051e57806375172a8b14610547578063792052181461054f57600080fd5b8063395093511161027657806352375bb11161021f5780635d5d4613116101f95780635d5d4613146104da578063702fa158146104ed57806370a08231146104f557600080fd5b806352375bb11461049357806354147e9e1461049b5780635bd9e299146104ae57600080fd5b8063429c9dff11610250578063429c9dff146104455780634343116a14610458578063480fa82e1461046b57600080fd5b806339509351146103fb5780633c3ad82e1461040e57806340993b261461042357600080fd5b806318160ddd116102d85780632ddc7de7116102b25780632ddc7de7146103da578063313ce567146103e45780633706c4da146103f357600080fd5b806318160ddd146103b75780631ba2f531146103bf57806323b872dd146103c757600080fd5b80630b1af86a116103095780630b1af86a14610380578063164e68de1461039557806316dbd7761461039557600080fd5b806301ffc9a71461033057806306fdde0314610358578063095ea7b31461036d575b600080fd5b61034361033e366004615254565b610759565b60405190151581526020015b60405180910390f35b6103606107f0565b60405161034f91906152a2565b61034361037b3660046152ea565b610882565b61038861089a565b60405161034f9190615351565b6103a96103a3366004615364565b50600090565b60405190815260200161034f565b609a546103a9565b6103a96108ca565b6103436103d5366004615381565b61096e565b6103a96101015481565b6040516012815260200161034f565b60cd546103a9565b6103436104093660046152ea565b610994565b61042161041c36600461540e565b6109d3565b005b610436610431366004615450565b6109ec565b60405161034f9392919061547c565b610436610453366004615450565b610a0f565b6103a961046636600461549b565b610a44565b61047e61047936600461540e565b610a5f565b6040805192835260208301919091520161034f565b610388610b10565b6103a96104a93660046154bd565b610ba2565b610100546104c2906001600160a01b031681565b6040516001600160a01b03909116815260200161034f565b6103a96104e83660046154bd565b610c2e565b610388610c3a565b6103a9610503366004615364565b6001600160a01b031660009081526098602052604090205490565b6103a961052c366004615364565b6001600160a01b0316600090815260cc602052604090205490565b6103a9610c72565b61043661055d3660046154d6565b610d03565b610102546105779067ffffffffffffffff1681565b60405167ffffffffffffffff909116815260200161034f565b6103a9610ff0565b610102546105779068010000000000000000900467ffffffffffffffff1681565b6103a960cb5481565b610360610fff565b6105dd6105d83660046152ea565b61100e565b60405161034f929190615522565b6103436105f93660046152ea565b611327565b61034361060c3660046152ea565b6113c9565b61042161061f366004615544565b6113d7565b60ca546104c2906001600160a01b031681565b6103a96106453660046152ea565b6117b2565b61042161041c366004615589565b61066b610666366004615701565b61181a565b6040516001600160e01b0319909116815260200161034f565b61034361187b565b61043661069a3660046157af565b6118ef565b6097546001600160a01b03166104c2565b6103a96106be366004615450565b611913565b6103a96106d13660046157ea565b6001600160a01b03918216600090815260996020908152604080832093909416825291909152205490565b61070f61070a3660046154bd565b61195c565b60405161034f929190615823565b610725611975565b60405161034f92919061583c565b61066b6107413660046158b8565b611b36565b61043661075436600461549b565b611b77565b60006001600160e01b031982166319a298e760e01b148061078a57506001600160e01b0319821663034b690160e61b145b806107a557506001600160e01b031982166306e253b560e11b145b806107c057506001600160e01b03198216635ee02cbf60e01b145b806107db57506001600160e01b03198216633bbccfe760e01b145b806107ea57506107ea82611b95565b92915050565b6060609b80546107ff90615921565b80601f016020809104026020016040519081016040528092919081815260200182805461082b90615921565b80156108785780601f1061084d57610100808354040283529160200191610878565b820191906000526020600020905b81548152906001019060200180831161085b57829003601f168201915b5050505050905090565b600033610890818585611bca565b5060019392505050565b60606000806108a7611975565b915091506108c382600001518360200151846040015184611cee565b9250505090565b6101005460ca546101015460405163071b3a2360e41b81523060048201526001600160a01b0392831660248201526044810191909152600092839283929116906371b3a23090606401600060405180830381865afa158015610930573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261095891908101906159b6565b915091506108c38282610969610c72565b611ed2565b60003361097c858285611ef1565b610987858585611f83565b60019150505b9392505050565b3360008181526099602090815260408083206001600160a01b038716845290915281205490919061089090829086906109ce908790615a30565b611bca565b6040516329a270f560e01b815260040160405180910390fd5b6000806060610a0033878787600080610d03565b92509250925093509350939050565b6000806060600080610a1f611975565b91509150610a308888888585612134565b50929b909a50919850909650505050505050565b60006040516329a270f560e01b815260040160405180910390fd5b60008060005b83811015610b08576000858583818110610a8157610a81615a43565b9050602002016020810190610a969190615364565b90506000610ab9826001600160a01b031660009081526098602052604090205490565b905080600003610aca575050610af6565b6000610ad6838361100e565b9150610ae490508186615a30565b9450610af08287615a30565b95505050505b80610b0081615a59565b915050610a65565b509250929050565b6101005460ca5461010154604051633026b36f60e11b81523060048201526001600160a01b0392831660248201526044810191909152606092919091169063604d66de906064015b600060405180830381865afa158015610b75573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610b9d9190810190615a72565b905090565b60ca546101015460408051602080820193909352808201859052815180820383018152606090910190915280519101206000916107ea916001600160a01b03909116905b6040516bffffffffffffffffffffffff19606084901b1660208201526034810182905260009060540160408051601f1981840301815291905280516020909101209392505050565b60006107ea33836117b2565b610100546101015460405163fbdd125560e01b815260048101919091526060916001600160a01b03169063fbdd125590602401610b58565b60ca546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa158015610cbf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ce39190615aa7565b60cb5490915080821015610cf957610cf9615ac0565b6108c38183615ad6565b6000806060610d1061187b565b15610d2e576040516323fa277f60e21b815260040160405180910390fd5b6101025468010000000000000000900467ffffffffffffffff16881015610d6857604051631bf1f55760e11b815260040160405180910390fd5b600080610d8f60405180606001604052806000815260200160008152602001600081525090565b600080610d9a611975565b91509150610da7826122a3565b9350610db68d8d8c8585612134565b939b50909950975095509250505088861015610de55760405163592d015360e01b815260040160405180910390fd5b610dee816122b2565b610e063360ca546001600160a01b031690308e6123a9565b610e108588612414565b8215610e1f57610e1f8361244b565b610100546001600160a01b031663f242432a308e610e3c8e610ba2565b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260448201526064810189905260a06084820152600060a482015260c401600060405180830381600087803b158015610ea057600080fd5b505af1158015610eb4573d6000803e3d6000fd5b5050610100546001600160a01b0316915063f242432a9050308e610ed786610ba2565b6040516001600160e01b031960e086901b1681526001600160a01b0393841660048201529290911660248301526044820152606481018e905260a06084820152600060a482015260c401600060405180830381600087803b158015610f3b57600080fd5b505af1158015610f4f573d6000803e3d6000fd5b50505050610f5c816124e1565b604080518c8152602081018790529081018790528a906001600160a01b038e16907f64cc4fe16c02ad83cc7cef979438c326a32c6984201d43cc67efb86ba07c7e8b9060600160405180910390a37fd16db9df479b59fe65c1ac1cf7b45b12b0b432fe457d316acdcbe22356ea495484604051610fd99190615351565b60405180910390a150505096509650969350505050565b610ffc6012600a615bc5565b81565b6060609c80546107ff90615921565b610100546101015460405163de61ece160e01b81526060926000926001600160a01b039091169163de61ece19161104b9160040190815260200190565b602060405180830381865afa158015611068573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061108c9190615bd1565b6110a95760405163d1d695db60e01b815260040160405180910390fd5b60008060006110b6612671565b9250925092506110d28160cb546110cd9190615ad6565b6128a8565b6110db866128e5565b955093506110e98787612924565b8451806110f8576110f8615ac0565b60008167ffffffffffffffff811115611113576111136155bb565b60405190808252806020026020018201604052801561113c578160200160208202803683370190505b50905060005b8281101561117a578082828151811061115d5761115d615a43565b60209081029190910101528061117281615a59565b915050611142565b5085156111985760ca54611198906001600160a01b03168a886129cb565b6101005460ca546101015460405163c87e500960e01b81526001600160a01b039384169363c87e5009936111d9938f93929091169187908e90600401615bf3565b6020604051808303816000875af11580156111f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061121c9190615aa7565b6112269087615a30565b95506112338585856129fb565b60006112476097546001600160a01b031690565b9050806001600160a01b03168a6001600160a01b0316036112c45760405163d77eb4c760e01b815260048101889052602481018a90526001600160a01b0382169063d77eb4c790604401600060405180830381600087803b1580156112ab57600080fd5b505af11580156112bf573d6000803e3d6000fd5b505050505b60408051600081526020810191829052906001600160a01b038c16907f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b990611311908b9085908f90615c37565b60405180910390a2505050505050509250929050565b3360008181526099602090815260408083206001600160a01b0387168452909152812054909190838110156113b15760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b60648201526084015b60405180910390fd5b6113be8286868403611bca565b506001949350505050565b600033610890818585611f83565b600054610100900460ff16158080156113f75750600054600160ff909116105b806114115750303b158015611411575060005460ff166001145b6114835760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016113a8565b6000805460ff1916600117905580156114a6576000805461ff0019166101001790555b60006114b86060850160408601615364565b6001600160a01b0316036114fb576114d66060840160408501615364565b6040516320d6c2ad60e01b81526001600160a01b0390911660048201526024016113a8565b61151361150e6060850160408601615364565b612b37565b61152b6115266040850160208601615364565b612bae565b611533612c4a565b6115406020840184615364565b61010080546001600160a01b0319166001600160a01b039290921691909117905581356101015561156f61187b565b1561158d576040516323fa277f60e21b815260040160405180910390fd5b60ca546040805163313ce56760e01b815290516000926001600160a01b03169163313ce5679160048083019260209291908290030181865afa1580156115d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115fb9190615c60565b60ff169050600061160d82600a615bc5565b905067ffffffffffffffff8110611637576040516347aad2ef60e11b815260040160405180910390fd5b8084602001351061165b576040516358d620b360e01b815260040160405180910390fd5b600060208501351561169957611675826020870135612cb7565b90506000611687602087013583615c83565b1161169457611694615ac0565b61169d565b5060015b67ffffffffffffffff6116b26012600a615bc5565b11156116c0576116c0615ac0565b600060128410156116f6576116d6846012615ad6565b6116e190600a615bc5565b6116ef906020880135615c83565b905061172a565b60128411156117235761170a601285615ad6565b61171590600a615bc5565b6116ef906020880135615cb0565b5060208501355b610102805467ffffffffffffffff84811668010000000000000000026fffffffffffffffffffffffffffffffff1990921690841617178155505050505080156117ad576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b60006117bc61187b565b156117da576040516323fa277f60e21b815260040160405180910390fd5b6097546001600160a01b0384811691161461180857604051633642e25360e21b815260040160405180910390fd5b61098d83836118156108ca565b612cee565b60006001600160a01b0386163014801561183b57506001600160a01b038516155b801561185b5750610100546001600160a01b0316336001600160a01b0316145b1561186e575063bc197c8160e01b611872565b5060005b95945050505050565b6101005461010154604051637cf15c8960e11b815260048101919091526000916001600160a01b03169063f9e2b91290602401602060405180830381865afa1580156118cb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b9d9190615bd1565b600080606061190387878787600080610d03565b9250925092509450945094915050565b600061191d61187b565b1561193b576040516323fa277f60e21b815260040160405180910390fd5b836000036109d357604051637f28d71160e01b815260040160405180910390fd5b600060603361196b8185612e8c565b9250925050915091565b61199960405180606001604052806000815260200160008152602001606081525090565b6101005460ca546101015460405163071b3a2360e41b81523060048201526001600160a01b0392831660248201526044810191909152606092839216906371b3a23090606401600060405180830381865afa1580156119fc573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611a2491908101906159b6565b8051909350909150611a37906001615a30565b815114611a4657611a46615ac0565b6040518060600160405280611a5a60cd5490565b8152602001600081526020018281525092506000611a806097546001600160a01b031690565b90506001600160a01b03811615611b3057604051639093708360e01b815230600482015260009081906001600160a01b038416906390937083906024016040805180830381865afa158015611ad9573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611afd9190615cc4565b915091508086600001818151611b139190615a30565b905250602086018051839190611b2a908390615a30565b90525050505b50509091565b60006001600160a01b03861630148015611b645750610100546001600160a01b0316336001600160a01b0316145b1561186e575063f23a6e6160e01b611872565b6000806060611b8885856000610a0f565b9250925092509250925092565b60006001600160e01b03198216630271189760e51b14806107ea57506301ffc9a760e01b6001600160e01b03198316146107ea565b6001600160a01b038316611c2c5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b60648201526084016113a8565b6001600160a01b038216611c8d5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b60648201526084016113a8565b6001600160a01b0383811660008181526099602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6060825182511115611d135760405163c57d332960e01b815260040160405180910390fd5b84600003611d3457604051636cdaa7bb60e01b815260040160405180910390fd5b815167ffffffffffffffff811115611d4e57611d4e6155bb565b604051908082528060200260200182016040528015611d77578160200160208202803683370190505b5090506000611d886012600a615bc5565b905060005b8251811015611ec857600086868381518110611dab57611dab615a43565b6020026020010151611dbd9190615a30565b90506000805b8651811015611e2f57838114611e1d57611e1085888381518110611de957611de9615a43565b6020026020010151898781518110611e0357611e03615a43565b602002602001015161301f565b611e1a9083615a30565b91505b80611e2781615a59565b915050611dc3565b506000611e54878581518110611e4757611e47615a43565b6020026020010151613045565b9050611e6283838c846131cb565b91506000611e708684615a30565b905080611e7f6012600a615bc5565b611e899088615c83565b611e939190615cb0565b878681518110611ea557611ea5615a43565b602002602001018181525050505050508080611ec090615a59565b915050611d8d565b5050949350505050565b600081611edf8585613265565b611ee99190615a30565b949350505050565b6001600160a01b038381166000908152609960209081526040808320938616835292905220546000198114611f7d5781811015611f705760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016113a8565b611f7d8484848403611bca565b50505050565b6001600160a01b038316611fe75760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b60648201526084016113a8565b6001600160a01b0382166120495760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b60648201526084016113a8565b6001600160a01b038316600090815260986020526040902054818110156120c15760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016113a8565b6001600160a01b0380851660008181526098602052604080822086860390559286168082529083902080548601905591517fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906121219086815260200190565b60405180910390a3611f7d848484613325565b6000806000606061215f60405180606001604052806000815260200160008152602001600081525090565b61216b6012600a615bc5565b61010254612184908a9067ffffffffffffffff16615a30565b61218e908c615c83565b6121989190615cb0565b92508983106121ba57604051634c86529b60e01b815260040160405180910390fd5b60006121c6848c615ad6565b90506000806121e5838d8c600001518d602001518e604001518e613359565b91509150600060405180608001604052808581526020018481526020018381526020018f815250905060006122226097546001600160a01b031690565b90506000612245826001600160a01b031660009081526098602052604090205490565b9050612250609a5490565b811461225e5761225e615ac0565b61226a8f828f866135a0565b809950819c50829d5050505061228e8d600001518e602001518f604001518f611cee565b97505050505050509550955095509550959050565b60006107ea82604001516137be565b60006122c66097546001600160a01b031690565b8251909150156123a5576020820151156122e2576122e2615ac0565b6040820151156122f4576122f4615ac0565b6001600160a01b03811661230a5761230a615ac0565b8151604051635cd9ef8160e01b81526000916001600160a01b03841691635cd9ef819161233d9160040190815260200190565b60408051808303816000875af115801561235b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061237f9190615cc4565b5083519091508110156117ad5760405163980427cb60e01b815260040160405180910390fd5b5050565b6040516001600160a01b0380851660248301528316604482015260648101829052611f7d9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091526137ce565b61241d826138a0565b80156123a5576000818152610103602052604081208054849290612442908490615a30565b90915550505050565b6101005460ca54612469916001600160a01b03918216911683613920565b6101005460ca5461010154604051636e8a12b160e11b81526001600160a01b03928316600482015260248101919091526044810184905291169063dd14256290606401600060405180830381600087803b1580156124c657600080fd5b505af11580156124da573d6000803e3d6000fd5b5050505050565b60006124f56097546001600160a01b031690565b905060008260400151118061250e575060008260200151115b156123a55781511561252257612522615ac0565b6001600160a01b03811661253857612538615ac0565b60408201511561255057612550818360400151612924565b60208201511561257957602082015160ca54612579916001600160a01b039091169083906129cb565b6020820151604080840151905163d77eb4c760e01b81526001600160a01b0384169263d77eb4c7926125b692600401918252602082015260400190565b600060405180830381600087803b1580156125d057600080fd5b505af11580156125e4573d6000803e3d6000fd5b50600092508291506125f39050565b60405190808252806020026020018201604052801561261c578160200160208202803683370190505b509050816001600160a01b03167f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b9846020015183866040015160405161266493929190615c37565b60405180910390a2505050565b60608060008060cb5490508060000361268a5750909192565b6101005461010154604051631aa94e1d60e31b815260048101919091526000916001600160a01b03169063d54a70e890602401600060405180830381865afa1580156126da573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526127029190810190615ce8565b5090506000612710826137be565b9050600082828151811061272657612726615a43565b6020026020010151111561273c57505050909192565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663970006006040518163ffffffff1660e01b8152600401600060405180830381865afa15801561279a573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526127c29190810190615d2f565b9550855167ffffffffffffffff8111156127de576127de6155bb565b604051908082528060200260200182016040528015612807578160200160208202803683370190505b5094506000935060005b865181101561289f57600087828151811061282e5761282e615a43565b60200260200101519050600061010360008381526020019081526020016000205490508060000361286057505061288d565b8088848151811061287357612873615a43565b60209081029190910101526128888188615a30565b965050505b8061289781615a59565b915050612811565b50505050909192565b60cb548111156128cb5760405163cd45232960e01b815260040160405180910390fd5b8060cb60008282546128dd9190615ad6565b909155505050565b6000606060006128f4609a5490565b90506129088482612903610c72565b613a3c565b925061291c8482612917610b10565b613a70565b915050915091565b80600003612945576040516302075cc160e41b815260040160405180910390fd5b6001600160a01b03821660009081526098602090815260408083205460cc90925282205461297591908490613b52565b6001600160a01b038416600090815260cc60205260408120805492935083929091906129a2908490615ad6565b925050819055508060cd60008282546129bb9190615ad6565b909155506117ad90508383613b9f565b6040516001600160a01b0383166024820152604481018290526117ad90849063a9059cbb60e01b906064016123dd565b80600003612a0857505050565b612a11816128a8565b60ca5460405163095ea7b360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490529091169063095ea7b3906044016020604051808303816000875af1158015612a84573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aa89190615bd1565b5060ca5460405163d683d2c760e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081169263d683d2c792612b0092919091169087908790600401615db5565b600060405180830381600087803b158015612b1a57600080fd5b505af1158015612b2e573d6000803e3d6000fd5b50505050505050565b600054610100900460ff16612ba25760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b612bab81613cda565b50565b600054610100900460ff16612c195760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b612c416040518060200160405280600081525060405180602001604052806000815250613e00565b612bab81613e75565b600054610100900460ff16612cb55760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b565b60008215612ce55781612ccb600185615ad6565b612cd59190615cb0565b612ce0906001615a30565b61098d565b50600092915050565b600082600003612d1157604051632ec86ff560e21b815260040160405180910390fd5b612d2483612d1e609a5490565b84613f88565b6001600160a01b038516600090815260cc602052604081205491925090612d4c908590615a30565b90506fffffffffffffffffffffffffffffffff811115612d7f57604051637756904960e01b815260040160405180910390fd5b6001600160a01b038516600090815260cc6020526040812082905560cd8054869290612dac908490615a30565b909155505060ca543390612dcb906001600160a01b03168230886123a9565b6001600160a01b038616600090815260986020526040812054612def908590615a30565b90506fffffffffffffffffffffffffffffffff811115612e2257604051637756904960e01b815260040160405180910390fd5b612e2c8785613fd4565b866001600160a01b0316826001600160a01b03167fdcde3dce73cebc28787eaab2e2b0474ab6f06f519882e7ee490a3f57e46abed38887604051612e7a929190918252602082015260400190565b60405180910390a35050509392505050565b60006060612e99836128e5565b9092509050612ea88484612924565b60ca54612ebf906001600160a01b031685846129cb565b80516101005460ca54610101546001600160a01b0392831692632eb2c2d69230928a92612eee9216908761409d565b866040518563ffffffff1660e01b8152600401612f0e9493929190615e13565b600060405180830381600087803b158015612f2857600080fd5b505af1158015612f3c573d6000803e3d6000fd5b505050506000612f546097546001600160a01b031690565b9050806001600160a01b0316866001600160a01b031603612fd15760405163d77eb4c760e01b815260048101859052602481018690526001600160a01b0382169063d77eb4c790604401600060405180830381600087803b158015612fb857600080fd5b505af1158015612fcc573d6000803e3d6000fd5b505050505b856001600160a01b03167f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b985858860405161300e93929190615c37565b60405180910390a250509250929050565b600080821161303057613030615ac0565b8161303b8486615c83565b611ee99190615cb0565b6040805161014081018252671bc16d674ec800008152671987adbcfc26e000602082015267177a3b78c9df20009181019190915267156217a05ad140006060820152671318fef1a6c220006080820152671088195fa3c9e00060a0820152670d9941201660e00060c0820152670a32144aa26d000060e082015267062ff6932687600061010082015267016345785d8a00006101208201526000908166b1a2bc2ec500006130fc85826706f05b59d3b20000614151565b6131069190615ad6565b9050600061311b66b1a2bc2ec5000083615cb0565b9050600061313066b1a2bc2ec5000084615e6e565b905060006131496009613144856001615a30565b614175565b905066b1a2bc2ec500008582600a811061316557613165615a43565b60200201518685600a811061317c5761317c615a43565b602002015161318b9190615ad6565b6131959084615c83565b61319f9190615cb0565b8584600a81106131b1576131b1615a43565b60200201516131c09190615ad6565b979650505050505050565b60008285101561325c5760006131e18684615c83565b6131eb8585615c83565b6131f76012600a615bc5565b6132019089615c83565b61320b9190615a30565b6132159190615ad6565b905060006132386132268789615c83565b836132336012600a615bc5565b61418b565b905060006132468680615c83565b90506132528183615cb0565b9350505050611ee9565b50919392505050565b600082518251111561328a5760405163c57d332960e01b815260040160405180910390fd5b60008060005b845181101561331a578581815181106132ab576132ab615a43565b60200260200101518582815181106132c5576132c5615a43565b60200260200101516132d79190615c83565b6132e19084615a30565b92508481815181106132f5576132f5615a43565b6020026020010151826133089190615a30565b915061331381615a59565b9050613290565b506118728282612cb7565b6097546001600160a01b03848116911614801561334a57506001600160a01b03821615155b156117ad576124da8282612e8c565b60008083518351111561337f5760405163c57d332960e01b815260040160405180910390fd5b825187106133a05760405163bdc9571560e01b815260040160405180910390fd5b856000036133c157604051636cdaa7bb60e01b815260040160405180910390fd5b60008060005b85518110156134a157808a1461348f5760006133e56012600a615bc5565b6133ef908d615c83565b90506134218188848151811061340757613407615a43565b6020026020010151898e81518110611e0357611e03615a43565b61342b9085615a30565b935086828151811061343f5761343f615a43565b60200260200101518c8a8a858151811061345b5761345b615a43565b602002602001015161346d9190615a30565b6134779190615a30565b6134819190615c83565b61348b9084615a30565b9250505b8061349981615a59565b9150506133c7565b5060006134b9868b81518110611e4757611e47615a43565b905061350088888c815181106134d1576134d1615a43565b60200260200101516134e39190615a30565b6134ef6012600a615bc5565b6134f99086615cb0565b8b8461423a565b925061350e6012600a615bc5565b6135189084615cb0565b9450858a8151811061352c5761352c615a43565b60200260200101518589898d8151811061354857613548615a43565b602002602001015161355a9190615a30565b6135649190615ad6565b61356e9190615c83565b6135789083615a30565b91506135906135896012600a615bc5565b8390612cb7565b9350505050965096945050505050565b6000806135c760405180606001604052806000815260200160008152602001600081525090565b5060408051606081018252600080825260208201819052918101829052845190916135f1876122a3565b90508186602001516136039190615a30565b9450600061363b8860400151838151811061362057613620615a43565b6020026020010151886060015161453790919063ffffffff16565b9050600061366f89604001518c8151811061365857613658615a43565b60200260200101518861453790919063ffffffff16565b905061367b828261454d565b955050508184106136905781840383526136dc565b838203886136a0576136a0615ac0565b6000886020015188604001516136b69190615ad6565b602086018390529050806136ca8b84615c83565b6136d49190615cb0565b604086015250505b838288602001516136ed9190615a30565b6136f79190615ad6565b602088015260005b87604001515181101561374c57848860400151828151811061372357613723615a43565b602002602001018181516137379190615a30565b9052508061374481615a59565b9150506136ff565b508487604001518a8151811061376457613764615a43565b602002602001018181516137789190615ad6565b9052506060860151604088015180518390811061379757613797615a43565b602002602001018181516137ab9190615ad6565b9150818152505050509450945094915050565b6000600182516107ea9190615ad6565b6000613823826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661455c9092919063ffffffff16565b8051909150156117ad57808060200190518101906138419190615bd1565b6117ad5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016113a8565b6138a8610c72565b8111156138c8576040516311d681c960e21b815260040160405180910390fd5b806000036138d35750565b8060cb60008282546138e59190615a30565b90915550506040518181527f7545428d48c07276e600a1b3c9689be2420624a568454764744bed2ed4785b5e9060200160405180910390a150565b80158061399a5750604051636eb1769f60e11b81523060048201526001600160a01b03838116602483015284169063dd62ed3e90604401602060405180830381865afa158015613974573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906139989190615aa7565b155b613a0c5760405162461bcd60e51b815260206004820152603660248201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60448201527f20746f206e6f6e2d7a65726f20616c6c6f77616e63650000000000000000000060648201526084016113a8565b6040516001600160a01b0383166024820152604481018290526117ad90849063095ea7b360e01b906064016123dd565b600082841115613a5f576040516302075cc160e41b815260040160405180910390fd5b831561098d578261303b8584615c83565b606082841115613a93576040516302075cc160e41b815260040160405180910390fd5b815167ffffffffffffffff811115613aad57613aad6155bb565b604051908082528060200260200182016040528015613ad6578160200160208202803683370190505b509050831561098d5760005b8251811015613b4a578385848381518110613aff57613aff615a43565b6020026020010151613b119190615c83565b613b1b9190615cb0565b828281518110613b2d57613b2d615a43565b602090810291909101015280613b4281615a59565b915050613ae2565b509392505050565b600083831115613b75576040516302075cc160e41b815260040160405180910390fd5b8315613b955783613b868484615c83565b613b909190615cb0565b611ee9565b6000949350505050565b6001600160a01b038216613bff5760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b60648201526084016113a8565b6001600160a01b03821660009081526098602052604090205481811015613c735760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b60648201526084016113a8565b6001600160a01b03831660008181526098602090815260408083208686039055609a80548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36117ad83600084613325565b600054610100900460ff16613d455760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6097546001600160a01b031615613d5e57613d5e615ac0565b6001600160a01b03811615801590613d8d5750613d8b6001600160a01b038216636831974d60e11b61456b565b155b15613db6576040516320d6c2ad60e01b81526001600160a01b03821660048201526024016113a8565b609780546001600160a01b0319166001600160a01b0383169081179091556040517f18da49b0178612731ce8a0d4a3052637cc23b8bfb85385e67c4373011d86ed1390600090a250565b600054610100900460ff16613e6b5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6123a58282614587565b600054610100900460ff16613ee05760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6012816001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015613f20573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613f449190615c60565b60ff161115613f66576040516347aad2ef60e11b815260040160405180910390fd5b60ca80546001600160a01b0319166001600160a01b0392909216919091179055565b600081613f9481615a59565b9250613fa490506004600a615bc5565b613fae9084615a30565b925060008311613fc057613fc0615ac0565b611ee982613fce8587615c83565b90612cb7565b6001600160a01b03821661402a5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016113a8565b80609a600082825461403c9190615a30565b90915550506001600160a01b0382166000818152609860209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36123a560008383613325565b60608167ffffffffffffffff8111156140b8576140b86155bb565b6040519080825280602002602001820160405280156140e1578160200160208202803683370190505b50905060005b82811015613b4a5760408051602080820187905281830184905282518083038401815260609092019092528051910120614122908690610be6565b82828151811061413457614134615a43565b60209081029190910101528061414981615a59565b9150506140e7565b600082841061416d578184116141675783611ee9565b81611ee9565b509092915050565b6000818310614184578161098d565b5090919050565b60008080600019858709858702925082811083820303915050806000036141c5578382816141bb576141bb615c9a565b049250505061098d565b8084116141d157600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b60008060006142578661424d878a614175565b613144908a615ad6565b90506142656012600a615bc5565b61426f9082615c83565b925061427b8188615ad6565b96506142878187615ad6565b915050801561452e578560000361429e5750611ee9565b838611156142ae576142ae615ac0565b67016345785d8a00008310156142c6576142c6615ac0565b671bc16d674ec800008311156142de576142de615ac0565b60006142e98761460b565b905060006142f78886615c83565b905060006143058288614652565b905060006143138588615c83565b90506000614321828a614661565b905061433681680727de34a24f900000111590565b15614373576143476012600a615bc5565b61435260018d615ad6565b61435c9190615c83565b6143669088615a30565b9650505050505050611ee9565b60006143998561439361438c6143898e8e615c83565b90565b8990614670565b90614682565b905060006143a983620f42401190565b1561442457816143b98186614694565b92506143cf6143c8848e614661565b8290614670565b90506143fd6143c88d6143e3816002615c83565b6143ed9190615c83565b6143f78689614694565b90614661565b9050600061440f896143938a85614670565b905061441b87826146a3565b925050506144d6565b614436614431605061460b565b841090565b1561447c576000614446846146ca565b905060006144548285614694565b905060006144668a6143938b85614670565b905061447288826146a3565b93505050506144d6565b600061448f61448a856146ca565b614718565b905060008e6144a583866132336012600a615bc5565b6144ae8a614718565b6144b89190615a30565b6144c29190615ad6565b90506144d16143898289613fce565b925050505b6144e781670de0b6b3a76400001190565b6144f157806144fb565b670de0b6b3a76400005b90508087101561450d5761450d615ac0565b61451a6143898883614682565b614524908a615a30565b9850505050505050505b50949350505050565b600081831161454757600061098d565b50900390565b6000818311614184578161098d565b6060611ee9848460008561472c565b6000614576836147fc565b801561098d575061098d838361482f565b600054610100900460ff166145f25760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b609b6145fe8382615ed0565b50609c6117ad8282615ed0565b6000614621670de0b6b3a7640000600019615cb0565b82111561464457604051631cd951a760e01b8152600481018390526024016113a8565b50670de0b6b3a76400000290565b600061098d6143898385615c83565b600061098d6143898385615cb0565b600061098d82845b6143899190615a30565b600061098d82845b6143899190615ad6565b600061098d61438984846148b4565b60008215612ce557612ce06146c3836146bd86600161496a565b90614976565b600161498e565b600081680736ea4425c11ac6308111156146fa57604051630d7b1d6560e11b8152600481018490526024016113a8565b6714057b7ef767814f8102611ee9670de0b6b3a7640000820461499a565b60006107ea670de0b6b3a764000083615cb0565b60608247101561478d5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016113a8565b600080866001600160a01b031685876040516147a99190615f90565b60006040518083038185875af1925050503d80600081146147e6576040519150601f19603f3d011682016040523d82523d6000602084013e6147eb565b606091505b50915091506131c0878383876149f0565b600061480f826301ffc9a760e01b61482f565b80156107ea5750614828826001600160e01b031961482f565b1592915050565b604080516001600160e01b03198316602480830191909152825180830390910181526044909101909152602080820180516001600160e01b03166301ffc9a760e01b178152825160009392849283928392918391908a617530fa92503d915060005190508280156148a1575060208210155b80156131c0575015159695505050505050565b60008080600019848609848602925082811083820303915050806000036148e85750670de0b6b3a7640000900490506107ea565b670de0b6b3a7640000811061491a57604051635173648d60e01b815260048101869052602481018590526044016113a8565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600061098d828461468a565b600061098d61438984670de0b6b3a764000085614a69565b600061098d8284614678565b600081680a688906bd8affffff8111156149ca5760405163b3b6ba1f60e01b8152600481018490526024016113a8565b60006149e2670de0b6b3a7640000604084901b615cb0565b9050611ee961438982614aca565b60608315614a5f578251600003614a58576001600160a01b0385163b614a585760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016113a8565b5081611ee9565b611ee9838361522a565b6000808060001985870985870292508281108382030391505080600003614a99578382816141bb576141bb615c9a565b8381106141d157604051630c740aef60e31b81526004810187905260248101869052604481018590526064016113a8565b600160bf1b67ff00000000000000821615614bd757678000000000000000821615614afe5768016a09e667f3bcc9090260401c5b674000000000000000821615614b1d576801306fe0a31b7152df0260401c5b672000000000000000821615614b3c576801172b83c7d517adce0260401c5b671000000000000000821615614b5b5768010b5586cf9890f62a0260401c5b670800000000000000821615614b7a576801059b0d31585743ae0260401c5b670400000000000000821615614b9957680102c9a3e778060ee70260401c5b670200000000000000821615614bb85768010163da9fb33356d80260401c5b670100000000000000821615614bd757680100b1afa5abcbed610260401c5b66ff000000000000821615614cd6576680000000000000821615614c045768010058c86da1c09ea20260401c5b6640000000000000821615614c22576801002c605e2e8cec500260401c5b6620000000000000821615614c4057680100162f3904051fa10260401c5b6610000000000000821615614c5e576801000b175effdc76ba0260401c5b6608000000000000821615614c7c57680100058ba01fb9f96d0260401c5b6604000000000000821615614c9a5768010002c5cc37da94920260401c5b6602000000000000821615614cb8576801000162e525ee05470260401c5b6601000000000000821615614cd65768010000b17255775c040260401c5b65ff0000000000821615614dcc5765800000000000821615614d01576801000058b91b5bc9ae0260401c5b65400000000000821615614d1e57680100002c5c89d5ec6d0260401c5b65200000000000821615614d3b5768010000162e43f4f8310260401c5b65100000000000821615614d5857680100000b1721bcfc9a0260401c5b65080000000000821615614d755768010000058b90cf1e6e0260401c5b65040000000000821615614d92576801000002c5c863b73f0260401c5b65020000000000821615614daf57680100000162e430e5a20260401c5b65010000000000821615614dcc576801000000b1721835510260401c5b64ff00000000821615614eb957648000000000821615614df557680100000058b90c0b490260401c5b644000000000821615614e115768010000002c5c8601cc0260401c5b642000000000821615614e2d576801000000162e42fff00260401c5b641000000000821615614e495768010000000b17217fbb0260401c5b640800000000821615614e65576801000000058b90bfce0260401c5b640400000000821615614e8157680100000002c5c85fe30260401c5b640200000000821615614e9d5768010000000162e42ff10260401c5b640100000000821615614eb957680100000000b17217f80260401c5b63ff000000821615614f9d576380000000821615614ee05768010000000058b90bfc0260401c5b6340000000821615614efb576801000000002c5c85fe0260401c5b6320000000821615614f1657680100000000162e42ff0260401c5b6310000000821615614f31576801000000000b17217f0260401c5b6308000000821615614f4c57680100000000058b90c00260401c5b6304000000821615614f675768010000000002c5c8600260401c5b6302000000821615614f82576801000000000162e4300260401c5b6301000000821615614f9d5768010000000000b172180260401c5b62ff00008216156150785762800000821615614fc2576801000000000058b90c0260401c5b62400000821615614fdc57680100000000002c5c860260401c5b62200000821615614ff65768010000000000162e430260401c5b6210000082161561501057680100000000000b17210260401c5b6208000082161561502a5768010000000000058b910260401c5b62040000821615615044576801000000000002c5c80260401c5b6202000082161561505e57680100000000000162e40260401c5b62010000821615615078576801000000000000b1720260401c5b61ff0082161561514a5761800082161561509b57680100000000000058b90260401c5b6140008216156150b45768010000000000002c5d0260401c5b6120008216156150cd576801000000000000162e0260401c5b6110008216156150e65768010000000000000b170260401c5b6108008216156150ff576801000000000000058c0260401c5b61040082161561511857680100000000000002c60260401c5b61020082161561513157680100000000000001630260401c5b61010082161561514a57680100000000000000b10260401c5b60ff82161561521357608082161561516b57680100000000000000590260401c5b6040821615615183576801000000000000002c0260401c5b602082161561519b57680100000000000000160260401c5b60108216156151b3576801000000000000000b0260401c5b60088216156151cb57680100000000000000060260401c5b60048216156151e357680100000000000000030260401c5b60028216156151fb57680100000000000000010260401c5b600182161561521357680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b81511561523a5781518083602001fd5b8060405162461bcd60e51b81526004016113a891906152a2565b60006020828403121561526657600080fd5b81356001600160e01b03198116811461098d57600080fd5b60005b83811015615299578181015183820152602001615281565b50506000910152565b60208152600082518060208401526152c181604085016020870161527e565b601f01601f19169190910160400192915050565b6001600160a01b0381168114612bab57600080fd5b600080604083850312156152fd57600080fd5b8235615308816152d5565b946020939093013593505050565b600081518084526020808501945080840160005b838110156153465781518752958201959082019060010161532a565b509495945050505050565b60208152600061098d6020830184615316565b60006020828403121561537657600080fd5b813561098d816152d5565b60008060006060848603121561539657600080fd5b83356153a1816152d5565b925060208401356153b1816152d5565b929592945050506040919091013590565b60008083601f8401126153d457600080fd5b50813567ffffffffffffffff8111156153ec57600080fd5b6020830191508360208260051b850101111561540757600080fd5b9250929050565b6000806020838503121561542157600080fd5b823567ffffffffffffffff81111561543857600080fd5b615444858286016153c2565b90969095509350505050565b60008060006060848603121561546557600080fd5b505081359360208301359350604090920135919050565b8381528260208201526060604082015260006118726060830184615316565b600080604083850312156154ae57600080fd5b50508035926020909101359150565b6000602082840312156154cf57600080fd5b5035919050565b60008060008060008060c087890312156154ef57600080fd5b86356154fa816152d5565b9860208801359850604088013597606081013597506080810135965060a00135945092505050565b6040815260006155356040830185615316565b90508260208301529392505050565b60008082840360e081121561555857600080fd5b60a081121561556657600080fd5b8392506040609f198201121561557b57600080fd5b5060a0830190509250929050565b60006020828403121561559b57600080fd5b81356fffffffffffffffffffffffffffffffff8116811461098d57600080fd5b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156155fa576155fa6155bb565b604052919050565b600067ffffffffffffffff82111561561c5761561c6155bb565b5060051b60200190565b600082601f83011261563757600080fd5b8135602061564c61564783615602565b6155d1565b82815260059290921b8401810191818101908684111561566b57600080fd5b8286015b84811015615686578035835291830191830161566f565b509695505050505050565b600082601f8301126156a257600080fd5b813567ffffffffffffffff8111156156bc576156bc6155bb565b6156cf601f8201601f19166020016155d1565b8181528460208386010111156156e457600080fd5b816020850160208301376000918101602001919091529392505050565b600080600080600060a0868803121561571957600080fd5b8535615724816152d5565b94506020860135615734816152d5565b9350604086013567ffffffffffffffff8082111561575157600080fd5b61575d89838a01615626565b9450606088013591508082111561577357600080fd5b61577f89838a01615626565b9350608088013591508082111561579557600080fd5b506157a288828901615691565b9150509295509295909350565b600080600080608085870312156157c557600080fd5b84356157d0816152d5565b966020860135965060408601359560600135945092505050565b600080604083850312156157fd57600080fd5b8235615808816152d5565b91506020830135615818816152d5565b809150509250929050565b828152604060208201526000611ee96040830184615316565b60408152600060a0820184516040840152602080860151606085015260408601516060608086015282815180855260c0870191508383019450600092505b8083101561589a578451825293830193600192909201919083019061587a565b50858103838701526158ac8188615316565b98975050505050505050565b600080600080600060a086880312156158d057600080fd5b85356158db816152d5565b945060208601356158eb816152d5565b93506040860135925060608601359150608086013567ffffffffffffffff81111561591557600080fd5b6157a288828901615691565b600181811c9082168061593557607f821691505b60208210810361595557634e487b7160e01b600052602260045260246000fd5b50919050565b600082601f83011261596c57600080fd5b8151602061597c61564783615602565b82815260059290921b8401810191818101908684111561599b57600080fd5b8286015b84811015615686578051835291830191830161599f565b600080604083850312156159c957600080fd5b825167ffffffffffffffff808211156159e157600080fd5b6159ed8683870161595b565b93506020850151915080821115615a0357600080fd5b50615a108582860161595b565b9150509250929050565b634e487b7160e01b600052601160045260246000fd5b808201808211156107ea576107ea615a1a565b634e487b7160e01b600052603260045260246000fd5b600060018201615a6b57615a6b615a1a565b5060010190565b600060208284031215615a8457600080fd5b815167ffffffffffffffff811115615a9b57600080fd5b611ee98482850161595b565b600060208284031215615ab957600080fd5b5051919050565b634e487b7160e01b600052600160045260246000fd5b818103818111156107ea576107ea615a1a565b600181815b80851115610b08578160001904821115615b0a57615b0a615a1a565b80851615615b1757918102915b93841c9390800290615aee565b600082615b33575060016107ea565b81615b40575060006107ea565b8160018114615b565760028114615b6057615b7c565b60019150506107ea565b60ff841115615b7157615b71615a1a565b50506001821b6107ea565b5060208310610133831016604e8410600b8410161715615b9f575081810a6107ea565b615ba98383615ae9565b8060001904821115615bbd57615bbd615a1a565b029392505050565b600061098d8383615b24565b600060208284031215615be357600080fd5b8151801515811461098d57600080fd5b60006001600160a01b03808816835280871660208401525084604083015260a06060830152615c2560a0830185615316565b82810360808401526158ac8185615316565b838152606060208201526000615c506060830185615316565b9050826040830152949350505050565b600060208284031215615c7257600080fd5b815160ff8116811461098d57600080fd5b80820281158282048414176107ea576107ea615a1a565b634e487b7160e01b600052601260045260246000fd5b600082615cbf57615cbf615c9a565b500490565b60008060408385031215615cd757600080fd5b505080516020909101519092909150565b60008060408385031215615cfb57600080fd5b825167ffffffffffffffff811115615d1257600080fd5b615d1e8582860161595b565b925050602083015190509250929050565b60006020808385031215615d4257600080fd5b825167ffffffffffffffff811115615d5957600080fd5b8301601f81018513615d6a57600080fd5b8051615d7861564782615602565b81815260059190911b82018301908381019087831115615d9757600080fd5b928401925b828410156131c057835182529284019290840190615d9c565b6000606082016001600160a01b03861683526020606081850152818651808452608086019150828801935060005b81811015615dff57845183529383019391830191600101615de3565b505084810360408601526158ac8187615316565b60006001600160a01b03808716835280861660208401525060a06040830152615e3f60a0830185615316565b8281036060840152615e518185615316565b838103608090940193909352505060008152602001949350505050565b600082615e7d57615e7d615c9a565b500690565b601f8211156117ad57600081815260208120601f850160051c81016020861015615ea95750805b601f850160051c820191505b81811015615ec857828155600101615eb5565b505050505050565b815167ffffffffffffffff811115615eea57615eea6155bb565b615efe81615ef88454615921565b84615e82565b602080601f831160018114615f335760008415615f1b5750858301515b600019600386901b1c1916600185901b178555615ec8565b600085815260208120601f198616915b82811015615f6257888601518255948401946001909101908401615f43565b5085821015615f805787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60008251615fa281846020870161527e565b919091019291505056fea2646970667358221220b3d97b482525cf969c4a7d5c761393e2eb1aa16189ac94d798fa1ce48197bb7564736f6c6343000813003300000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b225
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061032b5760003560e01c806372441d54116101b2578063b2016bd4116100f9578063d2da4040116100a2578063e03031a61161007c578063e03031a6146106fc578063eb175b7e1461071d578063f23a6e6114610733578063f55c79d01461074657600080fd5b8063d2da40401461069f578063d3c9727c146106b0578063dd62ed3e146106c357600080fd5b8063bc197c81116100d3578063bc197c8114610658578063c7ff158414610684578063cc071c4f1461068c57600080fd5b8063b2016bd414610624578063b518d9a414610637578063b78d05f71461064a57600080fd5b80639003adfe1161015b578063a457c2d711610135578063a457c2d7146105eb578063a9059cbb146105fe578063ae3afc031461061157600080fd5b80639003adfe146105b957806395d89b41146105c25780639f2a2944146105ca57600080fd5b80637e11b31f1161018c5780637e11b31f146105625780638ab0c0b2146105905780638ac2c6801461059857600080fd5b806372441d541461051e57806375172a8b14610547578063792052181461054f57600080fd5b8063395093511161027657806352375bb11161021f5780635d5d4613116101f95780635d5d4613146104da578063702fa158146104ed57806370a08231146104f557600080fd5b806352375bb11461049357806354147e9e1461049b5780635bd9e299146104ae57600080fd5b8063429c9dff11610250578063429c9dff146104455780634343116a14610458578063480fa82e1461046b57600080fd5b806339509351146103fb5780633c3ad82e1461040e57806340993b261461042357600080fd5b806318160ddd116102d85780632ddc7de7116102b25780632ddc7de7146103da578063313ce567146103e45780633706c4da146103f357600080fd5b806318160ddd146103b75780631ba2f531146103bf57806323b872dd146103c757600080fd5b80630b1af86a116103095780630b1af86a14610380578063164e68de1461039557806316dbd7761461039557600080fd5b806301ffc9a71461033057806306fdde0314610358578063095ea7b31461036d575b600080fd5b61034361033e366004615254565b610759565b60405190151581526020015b60405180910390f35b6103606107f0565b60405161034f91906152a2565b61034361037b3660046152ea565b610882565b61038861089a565b60405161034f9190615351565b6103a96103a3366004615364565b50600090565b60405190815260200161034f565b609a546103a9565b6103a96108ca565b6103436103d5366004615381565b61096e565b6103a96101015481565b6040516012815260200161034f565b60cd546103a9565b6103436104093660046152ea565b610994565b61042161041c36600461540e565b6109d3565b005b610436610431366004615450565b6109ec565b60405161034f9392919061547c565b610436610453366004615450565b610a0f565b6103a961046636600461549b565b610a44565b61047e61047936600461540e565b610a5f565b6040805192835260208301919091520161034f565b610388610b10565b6103a96104a93660046154bd565b610ba2565b610100546104c2906001600160a01b031681565b6040516001600160a01b03909116815260200161034f565b6103a96104e83660046154bd565b610c2e565b610388610c3a565b6103a9610503366004615364565b6001600160a01b031660009081526098602052604090205490565b6103a961052c366004615364565b6001600160a01b0316600090815260cc602052604090205490565b6103a9610c72565b61043661055d3660046154d6565b610d03565b610102546105779067ffffffffffffffff1681565b60405167ffffffffffffffff909116815260200161034f565b6103a9610ff0565b610102546105779068010000000000000000900467ffffffffffffffff1681565b6103a960cb5481565b610360610fff565b6105dd6105d83660046152ea565b61100e565b60405161034f929190615522565b6103436105f93660046152ea565b611327565b61034361060c3660046152ea565b6113c9565b61042161061f366004615544565b6113d7565b60ca546104c2906001600160a01b031681565b6103a96106453660046152ea565b6117b2565b61042161041c366004615589565b61066b610666366004615701565b61181a565b6040516001600160e01b0319909116815260200161034f565b61034361187b565b61043661069a3660046157af565b6118ef565b6097546001600160a01b03166104c2565b6103a96106be366004615450565b611913565b6103a96106d13660046157ea565b6001600160a01b03918216600090815260996020908152604080832093909416825291909152205490565b61070f61070a3660046154bd565b61195c565b60405161034f929190615823565b610725611975565b60405161034f92919061583c565b61066b6107413660046158b8565b611b36565b61043661075436600461549b565b611b77565b60006001600160e01b031982166319a298e760e01b148061078a57506001600160e01b0319821663034b690160e61b145b806107a557506001600160e01b031982166306e253b560e11b145b806107c057506001600160e01b03198216635ee02cbf60e01b145b806107db57506001600160e01b03198216633bbccfe760e01b145b806107ea57506107ea82611b95565b92915050565b6060609b80546107ff90615921565b80601f016020809104026020016040519081016040528092919081815260200182805461082b90615921565b80156108785780601f1061084d57610100808354040283529160200191610878565b820191906000526020600020905b81548152906001019060200180831161085b57829003601f168201915b5050505050905090565b600033610890818585611bca565b5060019392505050565b60606000806108a7611975565b915091506108c382600001518360200151846040015184611cee565b9250505090565b6101005460ca546101015460405163071b3a2360e41b81523060048201526001600160a01b0392831660248201526044810191909152600092839283929116906371b3a23090606401600060405180830381865afa158015610930573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261095891908101906159b6565b915091506108c38282610969610c72565b611ed2565b60003361097c858285611ef1565b610987858585611f83565b60019150505b9392505050565b3360008181526099602090815260408083206001600160a01b038716845290915281205490919061089090829086906109ce908790615a30565b611bca565b6040516329a270f560e01b815260040160405180910390fd5b6000806060610a0033878787600080610d03565b92509250925093509350939050565b6000806060600080610a1f611975565b91509150610a308888888585612134565b50929b909a50919850909650505050505050565b60006040516329a270f560e01b815260040160405180910390fd5b60008060005b83811015610b08576000858583818110610a8157610a81615a43565b9050602002016020810190610a969190615364565b90506000610ab9826001600160a01b031660009081526098602052604090205490565b905080600003610aca575050610af6565b6000610ad6838361100e565b9150610ae490508186615a30565b9450610af08287615a30565b95505050505b80610b0081615a59565b915050610a65565b509250929050565b6101005460ca5461010154604051633026b36f60e11b81523060048201526001600160a01b0392831660248201526044810191909152606092919091169063604d66de906064015b600060405180830381865afa158015610b75573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610b9d9190810190615a72565b905090565b60ca546101015460408051602080820193909352808201859052815180820383018152606090910190915280519101206000916107ea916001600160a01b03909116905b6040516bffffffffffffffffffffffff19606084901b1660208201526034810182905260009060540160408051601f1981840301815291905280516020909101209392505050565b60006107ea33836117b2565b610100546101015460405163fbdd125560e01b815260048101919091526060916001600160a01b03169063fbdd125590602401610b58565b60ca546040516370a0823160e01b815230600482015260009182916001600160a01b03909116906370a0823190602401602060405180830381865afa158015610cbf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ce39190615aa7565b60cb5490915080821015610cf957610cf9615ac0565b6108c38183615ad6565b6000806060610d1061187b565b15610d2e576040516323fa277f60e21b815260040160405180910390fd5b6101025468010000000000000000900467ffffffffffffffff16881015610d6857604051631bf1f55760e11b815260040160405180910390fd5b600080610d8f60405180606001604052806000815260200160008152602001600081525090565b600080610d9a611975565b91509150610da7826122a3565b9350610db68d8d8c8585612134565b939b50909950975095509250505088861015610de55760405163592d015360e01b815260040160405180910390fd5b610dee816122b2565b610e063360ca546001600160a01b031690308e6123a9565b610e108588612414565b8215610e1f57610e1f8361244b565b610100546001600160a01b031663f242432a308e610e3c8e610ba2565b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260448201526064810189905260a06084820152600060a482015260c401600060405180830381600087803b158015610ea057600080fd5b505af1158015610eb4573d6000803e3d6000fd5b5050610100546001600160a01b0316915063f242432a9050308e610ed786610ba2565b6040516001600160e01b031960e086901b1681526001600160a01b0393841660048201529290911660248301526044820152606481018e905260a06084820152600060a482015260c401600060405180830381600087803b158015610f3b57600080fd5b505af1158015610f4f573d6000803e3d6000fd5b50505050610f5c816124e1565b604080518c8152602081018790529081018790528a906001600160a01b038e16907f64cc4fe16c02ad83cc7cef979438c326a32c6984201d43cc67efb86ba07c7e8b9060600160405180910390a37fd16db9df479b59fe65c1ac1cf7b45b12b0b432fe457d316acdcbe22356ea495484604051610fd99190615351565b60405180910390a150505096509650969350505050565b610ffc6012600a615bc5565b81565b6060609c80546107ff90615921565b610100546101015460405163de61ece160e01b81526060926000926001600160a01b039091169163de61ece19161104b9160040190815260200190565b602060405180830381865afa158015611068573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061108c9190615bd1565b6110a95760405163d1d695db60e01b815260040160405180910390fd5b60008060006110b6612671565b9250925092506110d28160cb546110cd9190615ad6565b6128a8565b6110db866128e5565b955093506110e98787612924565b8451806110f8576110f8615ac0565b60008167ffffffffffffffff811115611113576111136155bb565b60405190808252806020026020018201604052801561113c578160200160208202803683370190505b50905060005b8281101561117a578082828151811061115d5761115d615a43565b60209081029190910101528061117281615a59565b915050611142565b5085156111985760ca54611198906001600160a01b03168a886129cb565b6101005460ca546101015460405163c87e500960e01b81526001600160a01b039384169363c87e5009936111d9938f93929091169187908e90600401615bf3565b6020604051808303816000875af11580156111f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061121c9190615aa7565b6112269087615a30565b95506112338585856129fb565b60006112476097546001600160a01b031690565b9050806001600160a01b03168a6001600160a01b0316036112c45760405163d77eb4c760e01b815260048101889052602481018a90526001600160a01b0382169063d77eb4c790604401600060405180830381600087803b1580156112ab57600080fd5b505af11580156112bf573d6000803e3d6000fd5b505050505b60408051600081526020810191829052906001600160a01b038c16907f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b990611311908b9085908f90615c37565b60405180910390a2505050505050509250929050565b3360008181526099602090815260408083206001600160a01b0387168452909152812054909190838110156113b15760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b60648201526084015b60405180910390fd5b6113be8286868403611bca565b506001949350505050565b600033610890818585611f83565b600054610100900460ff16158080156113f75750600054600160ff909116105b806114115750303b158015611411575060005460ff166001145b6114835760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016113a8565b6000805460ff1916600117905580156114a6576000805461ff0019166101001790555b60006114b86060850160408601615364565b6001600160a01b0316036114fb576114d66060840160408501615364565b6040516320d6c2ad60e01b81526001600160a01b0390911660048201526024016113a8565b61151361150e6060850160408601615364565b612b37565b61152b6115266040850160208601615364565b612bae565b611533612c4a565b6115406020840184615364565b61010080546001600160a01b0319166001600160a01b039290921691909117905581356101015561156f61187b565b1561158d576040516323fa277f60e21b815260040160405180910390fd5b60ca546040805163313ce56760e01b815290516000926001600160a01b03169163313ce5679160048083019260209291908290030181865afa1580156115d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115fb9190615c60565b60ff169050600061160d82600a615bc5565b905067ffffffffffffffff8110611637576040516347aad2ef60e11b815260040160405180910390fd5b8084602001351061165b576040516358d620b360e01b815260040160405180910390fd5b600060208501351561169957611675826020870135612cb7565b90506000611687602087013583615c83565b1161169457611694615ac0565b61169d565b5060015b67ffffffffffffffff6116b26012600a615bc5565b11156116c0576116c0615ac0565b600060128410156116f6576116d6846012615ad6565b6116e190600a615bc5565b6116ef906020880135615c83565b905061172a565b60128411156117235761170a601285615ad6565b61171590600a615bc5565b6116ef906020880135615cb0565b5060208501355b610102805467ffffffffffffffff84811668010000000000000000026fffffffffffffffffffffffffffffffff1990921690841617178155505050505080156117ad576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b60006117bc61187b565b156117da576040516323fa277f60e21b815260040160405180910390fd5b6097546001600160a01b0384811691161461180857604051633642e25360e21b815260040160405180910390fd5b61098d83836118156108ca565b612cee565b60006001600160a01b0386163014801561183b57506001600160a01b038516155b801561185b5750610100546001600160a01b0316336001600160a01b0316145b1561186e575063bc197c8160e01b611872565b5060005b95945050505050565b6101005461010154604051637cf15c8960e11b815260048101919091526000916001600160a01b03169063f9e2b91290602401602060405180830381865afa1580156118cb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b9d9190615bd1565b600080606061190387878787600080610d03565b9250925092509450945094915050565b600061191d61187b565b1561193b576040516323fa277f60e21b815260040160405180910390fd5b836000036109d357604051637f28d71160e01b815260040160405180910390fd5b600060603361196b8185612e8c565b9250925050915091565b61199960405180606001604052806000815260200160008152602001606081525090565b6101005460ca546101015460405163071b3a2360e41b81523060048201526001600160a01b0392831660248201526044810191909152606092839216906371b3a23090606401600060405180830381865afa1580156119fc573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611a2491908101906159b6565b8051909350909150611a37906001615a30565b815114611a4657611a46615ac0565b6040518060600160405280611a5a60cd5490565b8152602001600081526020018281525092506000611a806097546001600160a01b031690565b90506001600160a01b03811615611b3057604051639093708360e01b815230600482015260009081906001600160a01b038416906390937083906024016040805180830381865afa158015611ad9573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611afd9190615cc4565b915091508086600001818151611b139190615a30565b905250602086018051839190611b2a908390615a30565b90525050505b50509091565b60006001600160a01b03861630148015611b645750610100546001600160a01b0316336001600160a01b0316145b1561186e575063f23a6e6160e01b611872565b6000806060611b8885856000610a0f565b9250925092509250925092565b60006001600160e01b03198216630271189760e51b14806107ea57506301ffc9a760e01b6001600160e01b03198316146107ea565b6001600160a01b038316611c2c5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b60648201526084016113a8565b6001600160a01b038216611c8d5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b60648201526084016113a8565b6001600160a01b0383811660008181526099602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6060825182511115611d135760405163c57d332960e01b815260040160405180910390fd5b84600003611d3457604051636cdaa7bb60e01b815260040160405180910390fd5b815167ffffffffffffffff811115611d4e57611d4e6155bb565b604051908082528060200260200182016040528015611d77578160200160208202803683370190505b5090506000611d886012600a615bc5565b905060005b8251811015611ec857600086868381518110611dab57611dab615a43565b6020026020010151611dbd9190615a30565b90506000805b8651811015611e2f57838114611e1d57611e1085888381518110611de957611de9615a43565b6020026020010151898781518110611e0357611e03615a43565b602002602001015161301f565b611e1a9083615a30565b91505b80611e2781615a59565b915050611dc3565b506000611e54878581518110611e4757611e47615a43565b6020026020010151613045565b9050611e6283838c846131cb565b91506000611e708684615a30565b905080611e7f6012600a615bc5565b611e899088615c83565b611e939190615cb0565b878681518110611ea557611ea5615a43565b602002602001018181525050505050508080611ec090615a59565b915050611d8d565b5050949350505050565b600081611edf8585613265565b611ee99190615a30565b949350505050565b6001600160a01b038381166000908152609960209081526040808320938616835292905220546000198114611f7d5781811015611f705760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016113a8565b611f7d8484848403611bca565b50505050565b6001600160a01b038316611fe75760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b60648201526084016113a8565b6001600160a01b0382166120495760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b60648201526084016113a8565b6001600160a01b038316600090815260986020526040902054818110156120c15760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016113a8565b6001600160a01b0380851660008181526098602052604080822086860390559286168082529083902080548601905591517fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906121219086815260200190565b60405180910390a3611f7d848484613325565b6000806000606061215f60405180606001604052806000815260200160008152602001600081525090565b61216b6012600a615bc5565b61010254612184908a9067ffffffffffffffff16615a30565b61218e908c615c83565b6121989190615cb0565b92508983106121ba57604051634c86529b60e01b815260040160405180910390fd5b60006121c6848c615ad6565b90506000806121e5838d8c600001518d602001518e604001518e613359565b91509150600060405180608001604052808581526020018481526020018381526020018f815250905060006122226097546001600160a01b031690565b90506000612245826001600160a01b031660009081526098602052604090205490565b9050612250609a5490565b811461225e5761225e615ac0565b61226a8f828f866135a0565b809950819c50829d5050505061228e8d600001518e602001518f604001518f611cee565b97505050505050509550955095509550959050565b60006107ea82604001516137be565b60006122c66097546001600160a01b031690565b8251909150156123a5576020820151156122e2576122e2615ac0565b6040820151156122f4576122f4615ac0565b6001600160a01b03811661230a5761230a615ac0565b8151604051635cd9ef8160e01b81526000916001600160a01b03841691635cd9ef819161233d9160040190815260200190565b60408051808303816000875af115801561235b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061237f9190615cc4565b5083519091508110156117ad5760405163980427cb60e01b815260040160405180910390fd5b5050565b6040516001600160a01b0380851660248301528316604482015260648101829052611f7d9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091526137ce565b61241d826138a0565b80156123a5576000818152610103602052604081208054849290612442908490615a30565b90915550505050565b6101005460ca54612469916001600160a01b03918216911683613920565b6101005460ca5461010154604051636e8a12b160e11b81526001600160a01b03928316600482015260248101919091526044810184905291169063dd14256290606401600060405180830381600087803b1580156124c657600080fd5b505af11580156124da573d6000803e3d6000fd5b5050505050565b60006124f56097546001600160a01b031690565b905060008260400151118061250e575060008260200151115b156123a55781511561252257612522615ac0565b6001600160a01b03811661253857612538615ac0565b60408201511561255057612550818360400151612924565b60208201511561257957602082015160ca54612579916001600160a01b039091169083906129cb565b6020820151604080840151905163d77eb4c760e01b81526001600160a01b0384169263d77eb4c7926125b692600401918252602082015260400190565b600060405180830381600087803b1580156125d057600080fd5b505af11580156125e4573d6000803e3d6000fd5b50600092508291506125f39050565b60405190808252806020026020018201604052801561261c578160200160208202803683370190505b509050816001600160a01b03167f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b9846020015183866040015160405161266493929190615c37565b60405180910390a2505050565b60608060008060cb5490508060000361268a5750909192565b6101005461010154604051631aa94e1d60e31b815260048101919091526000916001600160a01b03169063d54a70e890602401600060405180830381865afa1580156126da573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526127029190810190615ce8565b5090506000612710826137be565b9050600082828151811061272657612726615a43565b6020026020010151111561273c57505050909192565b7f00000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b2256001600160a01b031663970006006040518163ffffffff1660e01b8152600401600060405180830381865afa15801561279a573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526127c29190810190615d2f565b9550855167ffffffffffffffff8111156127de576127de6155bb565b604051908082528060200260200182016040528015612807578160200160208202803683370190505b5094506000935060005b865181101561289f57600087828151811061282e5761282e615a43565b60200260200101519050600061010360008381526020019081526020016000205490508060000361286057505061288d565b8088848151811061287357612873615a43565b60209081029190910101526128888188615a30565b965050505b8061289781615a59565b915050612811565b50505050909192565b60cb548111156128cb5760405163cd45232960e01b815260040160405180910390fd5b8060cb60008282546128dd9190615ad6565b909155505050565b6000606060006128f4609a5490565b90506129088482612903610c72565b613a3c565b925061291c8482612917610b10565b613a70565b915050915091565b80600003612945576040516302075cc160e41b815260040160405180910390fd5b6001600160a01b03821660009081526098602090815260408083205460cc90925282205461297591908490613b52565b6001600160a01b038416600090815260cc60205260408120805492935083929091906129a2908490615ad6565b925050819055508060cd60008282546129bb9190615ad6565b909155506117ad90508383613b9f565b6040516001600160a01b0383166024820152604481018290526117ad90849063a9059cbb60e01b906064016123dd565b80600003612a0857505050565b612a11816128a8565b60ca5460405163095ea7b360e01b81526001600160a01b037f00000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b22581166004830152602482018490529091169063095ea7b3906044016020604051808303816000875af1158015612a84573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aa89190615bd1565b5060ca5460405163d683d2c760e01b81526001600160a01b037f00000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b22581169263d683d2c792612b0092919091169087908790600401615db5565b600060405180830381600087803b158015612b1a57600080fd5b505af1158015612b2e573d6000803e3d6000fd5b50505050505050565b600054610100900460ff16612ba25760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b612bab81613cda565b50565b600054610100900460ff16612c195760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b612c416040518060200160405280600081525060405180602001604052806000815250613e00565b612bab81613e75565b600054610100900460ff16612cb55760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b565b60008215612ce55781612ccb600185615ad6565b612cd59190615cb0565b612ce0906001615a30565b61098d565b50600092915050565b600082600003612d1157604051632ec86ff560e21b815260040160405180910390fd5b612d2483612d1e609a5490565b84613f88565b6001600160a01b038516600090815260cc602052604081205491925090612d4c908590615a30565b90506fffffffffffffffffffffffffffffffff811115612d7f57604051637756904960e01b815260040160405180910390fd5b6001600160a01b038516600090815260cc6020526040812082905560cd8054869290612dac908490615a30565b909155505060ca543390612dcb906001600160a01b03168230886123a9565b6001600160a01b038616600090815260986020526040812054612def908590615a30565b90506fffffffffffffffffffffffffffffffff811115612e2257604051637756904960e01b815260040160405180910390fd5b612e2c8785613fd4565b866001600160a01b0316826001600160a01b03167fdcde3dce73cebc28787eaab2e2b0474ab6f06f519882e7ee490a3f57e46abed38887604051612e7a929190918252602082015260400190565b60405180910390a35050509392505050565b60006060612e99836128e5565b9092509050612ea88484612924565b60ca54612ebf906001600160a01b031685846129cb565b80516101005460ca54610101546001600160a01b0392831692632eb2c2d69230928a92612eee9216908761409d565b866040518563ffffffff1660e01b8152600401612f0e9493929190615e13565b600060405180830381600087803b158015612f2857600080fd5b505af1158015612f3c573d6000803e3d6000fd5b505050506000612f546097546001600160a01b031690565b9050806001600160a01b0316866001600160a01b031603612fd15760405163d77eb4c760e01b815260048101859052602481018690526001600160a01b0382169063d77eb4c790604401600060405180830381600087803b158015612fb857600080fd5b505af1158015612fcc573d6000803e3d6000fd5b505050505b856001600160a01b03167f96bd1544577eb6c104cdc0a1e4eda89c64f8875c006dfda5baaef1aa5628b4b985858860405161300e93929190615c37565b60405180910390a250509250929050565b600080821161303057613030615ac0565b8161303b8486615c83565b611ee99190615cb0565b6040805161014081018252671bc16d674ec800008152671987adbcfc26e000602082015267177a3b78c9df20009181019190915267156217a05ad140006060820152671318fef1a6c220006080820152671088195fa3c9e00060a0820152670d9941201660e00060c0820152670a32144aa26d000060e082015267062ff6932687600061010082015267016345785d8a00006101208201526000908166b1a2bc2ec500006130fc85826706f05b59d3b20000614151565b6131069190615ad6565b9050600061311b66b1a2bc2ec5000083615cb0565b9050600061313066b1a2bc2ec5000084615e6e565b905060006131496009613144856001615a30565b614175565b905066b1a2bc2ec500008582600a811061316557613165615a43565b60200201518685600a811061317c5761317c615a43565b602002015161318b9190615ad6565b6131959084615c83565b61319f9190615cb0565b8584600a81106131b1576131b1615a43565b60200201516131c09190615ad6565b979650505050505050565b60008285101561325c5760006131e18684615c83565b6131eb8585615c83565b6131f76012600a615bc5565b6132019089615c83565b61320b9190615a30565b6132159190615ad6565b905060006132386132268789615c83565b836132336012600a615bc5565b61418b565b905060006132468680615c83565b90506132528183615cb0565b9350505050611ee9565b50919392505050565b600082518251111561328a5760405163c57d332960e01b815260040160405180910390fd5b60008060005b845181101561331a578581815181106132ab576132ab615a43565b60200260200101518582815181106132c5576132c5615a43565b60200260200101516132d79190615c83565b6132e19084615a30565b92508481815181106132f5576132f5615a43565b6020026020010151826133089190615a30565b915061331381615a59565b9050613290565b506118728282612cb7565b6097546001600160a01b03848116911614801561334a57506001600160a01b03821615155b156117ad576124da8282612e8c565b60008083518351111561337f5760405163c57d332960e01b815260040160405180910390fd5b825187106133a05760405163bdc9571560e01b815260040160405180910390fd5b856000036133c157604051636cdaa7bb60e01b815260040160405180910390fd5b60008060005b85518110156134a157808a1461348f5760006133e56012600a615bc5565b6133ef908d615c83565b90506134218188848151811061340757613407615a43565b6020026020010151898e81518110611e0357611e03615a43565b61342b9085615a30565b935086828151811061343f5761343f615a43565b60200260200101518c8a8a858151811061345b5761345b615a43565b602002602001015161346d9190615a30565b6134779190615a30565b6134819190615c83565b61348b9084615a30565b9250505b8061349981615a59565b9150506133c7565b5060006134b9868b81518110611e4757611e47615a43565b905061350088888c815181106134d1576134d1615a43565b60200260200101516134e39190615a30565b6134ef6012600a615bc5565b6134f99086615cb0565b8b8461423a565b925061350e6012600a615bc5565b6135189084615cb0565b9450858a8151811061352c5761352c615a43565b60200260200101518589898d8151811061354857613548615a43565b602002602001015161355a9190615a30565b6135649190615ad6565b61356e9190615c83565b6135789083615a30565b91506135906135896012600a615bc5565b8390612cb7565b9350505050965096945050505050565b6000806135c760405180606001604052806000815260200160008152602001600081525090565b5060408051606081018252600080825260208201819052918101829052845190916135f1876122a3565b90508186602001516136039190615a30565b9450600061363b8860400151838151811061362057613620615a43565b6020026020010151886060015161453790919063ffffffff16565b9050600061366f89604001518c8151811061365857613658615a43565b60200260200101518861453790919063ffffffff16565b905061367b828261454d565b955050508184106136905781840383526136dc565b838203886136a0576136a0615ac0565b6000886020015188604001516136b69190615ad6565b602086018390529050806136ca8b84615c83565b6136d49190615cb0565b604086015250505b838288602001516136ed9190615a30565b6136f79190615ad6565b602088015260005b87604001515181101561374c57848860400151828151811061372357613723615a43565b602002602001018181516137379190615a30565b9052508061374481615a59565b9150506136ff565b508487604001518a8151811061376457613764615a43565b602002602001018181516137789190615ad6565b9052506060860151604088015180518390811061379757613797615a43565b602002602001018181516137ab9190615ad6565b9150818152505050509450945094915050565b6000600182516107ea9190615ad6565b6000613823826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661455c9092919063ffffffff16565b8051909150156117ad57808060200190518101906138419190615bd1565b6117ad5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016113a8565b6138a8610c72565b8111156138c8576040516311d681c960e21b815260040160405180910390fd5b806000036138d35750565b8060cb60008282546138e59190615a30565b90915550506040518181527f7545428d48c07276e600a1b3c9689be2420624a568454764744bed2ed4785b5e9060200160405180910390a150565b80158061399a5750604051636eb1769f60e11b81523060048201526001600160a01b03838116602483015284169063dd62ed3e90604401602060405180830381865afa158015613974573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906139989190615aa7565b155b613a0c5760405162461bcd60e51b815260206004820152603660248201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60448201527f20746f206e6f6e2d7a65726f20616c6c6f77616e63650000000000000000000060648201526084016113a8565b6040516001600160a01b0383166024820152604481018290526117ad90849063095ea7b360e01b906064016123dd565b600082841115613a5f576040516302075cc160e41b815260040160405180910390fd5b831561098d578261303b8584615c83565b606082841115613a93576040516302075cc160e41b815260040160405180910390fd5b815167ffffffffffffffff811115613aad57613aad6155bb565b604051908082528060200260200182016040528015613ad6578160200160208202803683370190505b509050831561098d5760005b8251811015613b4a578385848381518110613aff57613aff615a43565b6020026020010151613b119190615c83565b613b1b9190615cb0565b828281518110613b2d57613b2d615a43565b602090810291909101015280613b4281615a59565b915050613ae2565b509392505050565b600083831115613b75576040516302075cc160e41b815260040160405180910390fd5b8315613b955783613b868484615c83565b613b909190615cb0565b611ee9565b6000949350505050565b6001600160a01b038216613bff5760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b60648201526084016113a8565b6001600160a01b03821660009081526098602052604090205481811015613c735760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b60648201526084016113a8565b6001600160a01b03831660008181526098602090815260408083208686039055609a80548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36117ad83600084613325565b600054610100900460ff16613d455760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6097546001600160a01b031615613d5e57613d5e615ac0565b6001600160a01b03811615801590613d8d5750613d8b6001600160a01b038216636831974d60e11b61456b565b155b15613db6576040516320d6c2ad60e01b81526001600160a01b03821660048201526024016113a8565b609780546001600160a01b0319166001600160a01b0383169081179091556040517f18da49b0178612731ce8a0d4a3052637cc23b8bfb85385e67c4373011d86ed1390600090a250565b600054610100900460ff16613e6b5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6123a58282614587565b600054610100900460ff16613ee05760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b6012816001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015613f20573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613f449190615c60565b60ff161115613f66576040516347aad2ef60e11b815260040160405180910390fd5b60ca80546001600160a01b0319166001600160a01b0392909216919091179055565b600081613f9481615a59565b9250613fa490506004600a615bc5565b613fae9084615a30565b925060008311613fc057613fc0615ac0565b611ee982613fce8587615c83565b90612cb7565b6001600160a01b03821661402a5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016113a8565b80609a600082825461403c9190615a30565b90915550506001600160a01b0382166000818152609860209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36123a560008383613325565b60608167ffffffffffffffff8111156140b8576140b86155bb565b6040519080825280602002602001820160405280156140e1578160200160208202803683370190505b50905060005b82811015613b4a5760408051602080820187905281830184905282518083038401815260609092019092528051910120614122908690610be6565b82828151811061413457614134615a43565b60209081029190910101528061414981615a59565b9150506140e7565b600082841061416d578184116141675783611ee9565b81611ee9565b509092915050565b6000818310614184578161098d565b5090919050565b60008080600019858709858702925082811083820303915050806000036141c5578382816141bb576141bb615c9a565b049250505061098d565b8084116141d157600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b60008060006142578661424d878a614175565b613144908a615ad6565b90506142656012600a615bc5565b61426f9082615c83565b925061427b8188615ad6565b96506142878187615ad6565b915050801561452e578560000361429e5750611ee9565b838611156142ae576142ae615ac0565b67016345785d8a00008310156142c6576142c6615ac0565b671bc16d674ec800008311156142de576142de615ac0565b60006142e98761460b565b905060006142f78886615c83565b905060006143058288614652565b905060006143138588615c83565b90506000614321828a614661565b905061433681680727de34a24f900000111590565b15614373576143476012600a615bc5565b61435260018d615ad6565b61435c9190615c83565b6143669088615a30565b9650505050505050611ee9565b60006143998561439361438c6143898e8e615c83565b90565b8990614670565b90614682565b905060006143a983620f42401190565b1561442457816143b98186614694565b92506143cf6143c8848e614661565b8290614670565b90506143fd6143c88d6143e3816002615c83565b6143ed9190615c83565b6143f78689614694565b90614661565b9050600061440f896143938a85614670565b905061441b87826146a3565b925050506144d6565b614436614431605061460b565b841090565b1561447c576000614446846146ca565b905060006144548285614694565b905060006144668a6143938b85614670565b905061447288826146a3565b93505050506144d6565b600061448f61448a856146ca565b614718565b905060008e6144a583866132336012600a615bc5565b6144ae8a614718565b6144b89190615a30565b6144c29190615ad6565b90506144d16143898289613fce565b925050505b6144e781670de0b6b3a76400001190565b6144f157806144fb565b670de0b6b3a76400005b90508087101561450d5761450d615ac0565b61451a6143898883614682565b614524908a615a30565b9850505050505050505b50949350505050565b600081831161454757600061098d565b50900390565b6000818311614184578161098d565b6060611ee9848460008561472c565b6000614576836147fc565b801561098d575061098d838361482f565b600054610100900460ff166145f25760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016113a8565b609b6145fe8382615ed0565b50609c6117ad8282615ed0565b6000614621670de0b6b3a7640000600019615cb0565b82111561464457604051631cd951a760e01b8152600481018390526024016113a8565b50670de0b6b3a76400000290565b600061098d6143898385615c83565b600061098d6143898385615cb0565b600061098d82845b6143899190615a30565b600061098d82845b6143899190615ad6565b600061098d61438984846148b4565b60008215612ce557612ce06146c3836146bd86600161496a565b90614976565b600161498e565b600081680736ea4425c11ac6308111156146fa57604051630d7b1d6560e11b8152600481018490526024016113a8565b6714057b7ef767814f8102611ee9670de0b6b3a7640000820461499a565b60006107ea670de0b6b3a764000083615cb0565b60608247101561478d5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016113a8565b600080866001600160a01b031685876040516147a99190615f90565b60006040518083038185875af1925050503d80600081146147e6576040519150601f19603f3d011682016040523d82523d6000602084013e6147eb565b606091505b50915091506131c0878383876149f0565b600061480f826301ffc9a760e01b61482f565b80156107ea5750614828826001600160e01b031961482f565b1592915050565b604080516001600160e01b03198316602480830191909152825180830390910181526044909101909152602080820180516001600160e01b03166301ffc9a760e01b178152825160009392849283928392918391908a617530fa92503d915060005190508280156148a1575060208210155b80156131c0575015159695505050505050565b60008080600019848609848602925082811083820303915050806000036148e85750670de0b6b3a7640000900490506107ea565b670de0b6b3a7640000811061491a57604051635173648d60e01b815260048101869052602481018590526044016113a8565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600061098d828461468a565b600061098d61438984670de0b6b3a764000085614a69565b600061098d8284614678565b600081680a688906bd8affffff8111156149ca5760405163b3b6ba1f60e01b8152600481018490526024016113a8565b60006149e2670de0b6b3a7640000604084901b615cb0565b9050611ee961438982614aca565b60608315614a5f578251600003614a58576001600160a01b0385163b614a585760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016113a8565b5081611ee9565b611ee9838361522a565b6000808060001985870985870292508281108382030391505080600003614a99578382816141bb576141bb615c9a565b8381106141d157604051630c740aef60e31b81526004810187905260248101869052604481018590526064016113a8565b600160bf1b67ff00000000000000821615614bd757678000000000000000821615614afe5768016a09e667f3bcc9090260401c5b674000000000000000821615614b1d576801306fe0a31b7152df0260401c5b672000000000000000821615614b3c576801172b83c7d517adce0260401c5b671000000000000000821615614b5b5768010b5586cf9890f62a0260401c5b670800000000000000821615614b7a576801059b0d31585743ae0260401c5b670400000000000000821615614b9957680102c9a3e778060ee70260401c5b670200000000000000821615614bb85768010163da9fb33356d80260401c5b670100000000000000821615614bd757680100b1afa5abcbed610260401c5b66ff000000000000821615614cd6576680000000000000821615614c045768010058c86da1c09ea20260401c5b6640000000000000821615614c22576801002c605e2e8cec500260401c5b6620000000000000821615614c4057680100162f3904051fa10260401c5b6610000000000000821615614c5e576801000b175effdc76ba0260401c5b6608000000000000821615614c7c57680100058ba01fb9f96d0260401c5b6604000000000000821615614c9a5768010002c5cc37da94920260401c5b6602000000000000821615614cb8576801000162e525ee05470260401c5b6601000000000000821615614cd65768010000b17255775c040260401c5b65ff0000000000821615614dcc5765800000000000821615614d01576801000058b91b5bc9ae0260401c5b65400000000000821615614d1e57680100002c5c89d5ec6d0260401c5b65200000000000821615614d3b5768010000162e43f4f8310260401c5b65100000000000821615614d5857680100000b1721bcfc9a0260401c5b65080000000000821615614d755768010000058b90cf1e6e0260401c5b65040000000000821615614d92576801000002c5c863b73f0260401c5b65020000000000821615614daf57680100000162e430e5a20260401c5b65010000000000821615614dcc576801000000b1721835510260401c5b64ff00000000821615614eb957648000000000821615614df557680100000058b90c0b490260401c5b644000000000821615614e115768010000002c5c8601cc0260401c5b642000000000821615614e2d576801000000162e42fff00260401c5b641000000000821615614e495768010000000b17217fbb0260401c5b640800000000821615614e65576801000000058b90bfce0260401c5b640400000000821615614e8157680100000002c5c85fe30260401c5b640200000000821615614e9d5768010000000162e42ff10260401c5b640100000000821615614eb957680100000000b17217f80260401c5b63ff000000821615614f9d576380000000821615614ee05768010000000058b90bfc0260401c5b6340000000821615614efb576801000000002c5c85fe0260401c5b6320000000821615614f1657680100000000162e42ff0260401c5b6310000000821615614f31576801000000000b17217f0260401c5b6308000000821615614f4c57680100000000058b90c00260401c5b6304000000821615614f675768010000000002c5c8600260401c5b6302000000821615614f82576801000000000162e4300260401c5b6301000000821615614f9d5768010000000000b172180260401c5b62ff00008216156150785762800000821615614fc2576801000000000058b90c0260401c5b62400000821615614fdc57680100000000002c5c860260401c5b62200000821615614ff65768010000000000162e430260401c5b6210000082161561501057680100000000000b17210260401c5b6208000082161561502a5768010000000000058b910260401c5b62040000821615615044576801000000000002c5c80260401c5b6202000082161561505e57680100000000000162e40260401c5b62010000821615615078576801000000000000b1720260401c5b61ff0082161561514a5761800082161561509b57680100000000000058b90260401c5b6140008216156150b45768010000000000002c5d0260401c5b6120008216156150cd576801000000000000162e0260401c5b6110008216156150e65768010000000000000b170260401c5b6108008216156150ff576801000000000000058c0260401c5b61040082161561511857680100000000000002c60260401c5b61020082161561513157680100000000000001630260401c5b61010082161561514a57680100000000000000b10260401c5b60ff82161561521357608082161561516b57680100000000000000590260401c5b6040821615615183576801000000000000002c0260401c5b602082161561519b57680100000000000000160260401c5b60108216156151b3576801000000000000000b0260401c5b60088216156151cb57680100000000000000060260401c5b60048216156151e357680100000000000000030260401c5b60028216156151fb57680100000000000000010260401c5b600182161561521357680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b81511561523a5781518083602001fd5b8060405162461bcd60e51b81526004016113a891906152a2565b60006020828403121561526657600080fd5b81356001600160e01b03198116811461098d57600080fd5b60005b83811015615299578181015183820152602001615281565b50506000910152565b60208152600082518060208401526152c181604085016020870161527e565b601f01601f19169190910160400192915050565b6001600160a01b0381168114612bab57600080fd5b600080604083850312156152fd57600080fd5b8235615308816152d5565b946020939093013593505050565b600081518084526020808501945080840160005b838110156153465781518752958201959082019060010161532a565b509495945050505050565b60208152600061098d6020830184615316565b60006020828403121561537657600080fd5b813561098d816152d5565b60008060006060848603121561539657600080fd5b83356153a1816152d5565b925060208401356153b1816152d5565b929592945050506040919091013590565b60008083601f8401126153d457600080fd5b50813567ffffffffffffffff8111156153ec57600080fd5b6020830191508360208260051b850101111561540757600080fd5b9250929050565b6000806020838503121561542157600080fd5b823567ffffffffffffffff81111561543857600080fd5b615444858286016153c2565b90969095509350505050565b60008060006060848603121561546557600080fd5b505081359360208301359350604090920135919050565b8381528260208201526060604082015260006118726060830184615316565b600080604083850312156154ae57600080fd5b50508035926020909101359150565b6000602082840312156154cf57600080fd5b5035919050565b60008060008060008060c087890312156154ef57600080fd5b86356154fa816152d5565b9860208801359850604088013597606081013597506080810135965060a00135945092505050565b6040815260006155356040830185615316565b90508260208301529392505050565b60008082840360e081121561555857600080fd5b60a081121561556657600080fd5b8392506040609f198201121561557b57600080fd5b5060a0830190509250929050565b60006020828403121561559b57600080fd5b81356fffffffffffffffffffffffffffffffff8116811461098d57600080fd5b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156155fa576155fa6155bb565b604052919050565b600067ffffffffffffffff82111561561c5761561c6155bb565b5060051b60200190565b600082601f83011261563757600080fd5b8135602061564c61564783615602565b6155d1565b82815260059290921b8401810191818101908684111561566b57600080fd5b8286015b84811015615686578035835291830191830161566f565b509695505050505050565b600082601f8301126156a257600080fd5b813567ffffffffffffffff8111156156bc576156bc6155bb565b6156cf601f8201601f19166020016155d1565b8181528460208386010111156156e457600080fd5b816020850160208301376000918101602001919091529392505050565b600080600080600060a0868803121561571957600080fd5b8535615724816152d5565b94506020860135615734816152d5565b9350604086013567ffffffffffffffff8082111561575157600080fd5b61575d89838a01615626565b9450606088013591508082111561577357600080fd5b61577f89838a01615626565b9350608088013591508082111561579557600080fd5b506157a288828901615691565b9150509295509295909350565b600080600080608085870312156157c557600080fd5b84356157d0816152d5565b966020860135965060408601359560600135945092505050565b600080604083850312156157fd57600080fd5b8235615808816152d5565b91506020830135615818816152d5565b809150509250929050565b828152604060208201526000611ee96040830184615316565b60408152600060a0820184516040840152602080860151606085015260408601516060608086015282815180855260c0870191508383019450600092505b8083101561589a578451825293830193600192909201919083019061587a565b50858103838701526158ac8188615316565b98975050505050505050565b600080600080600060a086880312156158d057600080fd5b85356158db816152d5565b945060208601356158eb816152d5565b93506040860135925060608601359150608086013567ffffffffffffffff81111561591557600080fd5b6157a288828901615691565b600181811c9082168061593557607f821691505b60208210810361595557634e487b7160e01b600052602260045260246000fd5b50919050565b600082601f83011261596c57600080fd5b8151602061597c61564783615602565b82815260059290921b8401810191818101908684111561599b57600080fd5b8286015b84811015615686578051835291830191830161599f565b600080604083850312156159c957600080fd5b825167ffffffffffffffff808211156159e157600080fd5b6159ed8683870161595b565b93506020850151915080821115615a0357600080fd5b50615a108582860161595b565b9150509250929050565b634e487b7160e01b600052601160045260246000fd5b808201808211156107ea576107ea615a1a565b634e487b7160e01b600052603260045260246000fd5b600060018201615a6b57615a6b615a1a565b5060010190565b600060208284031215615a8457600080fd5b815167ffffffffffffffff811115615a9b57600080fd5b611ee98482850161595b565b600060208284031215615ab957600080fd5b5051919050565b634e487b7160e01b600052600160045260246000fd5b818103818111156107ea576107ea615a1a565b600181815b80851115610b08578160001904821115615b0a57615b0a615a1a565b80851615615b1757918102915b93841c9390800290615aee565b600082615b33575060016107ea565b81615b40575060006107ea565b8160018114615b565760028114615b6057615b7c565b60019150506107ea565b60ff841115615b7157615b71615a1a565b50506001821b6107ea565b5060208310610133831016604e8410600b8410161715615b9f575081810a6107ea565b615ba98383615ae9565b8060001904821115615bbd57615bbd615a1a565b029392505050565b600061098d8383615b24565b600060208284031215615be357600080fd5b8151801515811461098d57600080fd5b60006001600160a01b03808816835280871660208401525084604083015260a06060830152615c2560a0830185615316565b82810360808401526158ac8185615316565b838152606060208201526000615c506060830185615316565b9050826040830152949350505050565b600060208284031215615c7257600080fd5b815160ff8116811461098d57600080fd5b80820281158282048414176107ea576107ea615a1a565b634e487b7160e01b600052601260045260246000fd5b600082615cbf57615cbf615c9a565b500490565b60008060408385031215615cd757600080fd5b505080516020909101519092909150565b60008060408385031215615cfb57600080fd5b825167ffffffffffffffff811115615d1257600080fd5b615d1e8582860161595b565b925050602083015190509250929050565b60006020808385031215615d4257600080fd5b825167ffffffffffffffff811115615d5957600080fd5b8301601f81018513615d6a57600080fd5b8051615d7861564782615602565b81815260059190911b82018301908381019087831115615d9757600080fd5b928401925b828410156131c057835182529284019290840190615d9c565b6000606082016001600160a01b03861683526020606081850152818651808452608086019150828801935060005b81811015615dff57845183529383019391830191600101615de3565b505084810360408601526158ac8187615316565b60006001600160a01b03808716835280861660208401525060a06040830152615e3f60a0830185615316565b8281036060840152615e518185615316565b838103608090940193909352505060008152602001949350505050565b600082615e7d57615e7d615c9a565b500690565b601f8211156117ad57600081815260208120601f850160051c81016020861015615ea95750805b601f850160051c820191505b81811015615ec857828155600101615eb5565b505050505050565b815167ffffffffffffffff811115615eea57615eea6155bb565b615efe81615ef88454615921565b84615e82565b602080601f831160018114615f335760008415615f1b5750858301515b600019600386901b1c1916600185901b178555615ec8565b600085815260208120601f198616915b82811015615f6257888601518255948401946001909101908401615f43565b5085821015615f805787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60008251615fa281846020870161527e565b919091019291505056fea2646970667358221220b3d97b482525cf969c4a7d5c761393e2eb1aa16189ac94d798fa1ce48197bb7564736f6c63430008130033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b225
-----Decoded View---------------
Arg [0] : feeDistributor (address): 0x56321A3F1b7a1de1A092829e1B0c72db4Ab1b225
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000056321a3f1b7a1de1a092829e1b0c72db4ab1b225
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.