Source Code
Overview
POL Balance
0 POL
More Info
ContractCreator
Multichain Info
N/A
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Authorizer
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; import {IAuthorization} from "../interfaces/IAuthorization.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import {NodeOwners} from "./NodeOwners.sol"; /** * @title Authorizer * @notice A single authorization contract which allows for complex authorization mechanisms by using multiple modules, nested conditions */ contract Authorizer is NodeOwners { using Strings for string; enum Operators { NOT, AND, OR } struct Node { Operators op; address value; uint256 left; uint256 right; } Node[] internal nodes; mapping(bytes32 => Node) private roots; event AuthorizationSet(bytes32 id, string expression, address[] authContracts); constructor(address graph, address identity) NodeOwners(graph, identity) {} /** * @notice Sets the auth tree for the given expression * @param id The id of the node to set the expression for * @param expression A string expressing the boolean auth expression * @param authContracts A list of auth contracts */ function setAuth(bytes32 id, string calldata expression, address[] calldata authContracts) external virtual nodeOwner(id) { uint256[] memory expressionPostfix = construct(expression); construct(id, expressionPostfix, authContracts); emit AuthorizationSet(id, expression, authContracts); } /** * @notice Generalized auth function * @param id The id of the node to authenticate * @param user Address of the user to check auth against */ function auth(bytes32 id, address user) external view returns (bool) { return evaluate(id, roots[id], user); } /** * @notice View the values of the root in the expression tree */ function getRoot(bytes32 id) external view returns (Operators, address, uint256, uint256) { Node memory root = roots[id]; return (root.op, root.value, root.left, root.right); } /** * @notice View the values of a given node in the expression tree * @param id The id of the node to view */ function getNode(uint256 id) external view returns (Operators, address, uint256, uint256) { require(id > 0, "Invalid node id"); Node memory node = nodes[id - 1]; return (node.op, node.value, node.left, node.right); } /** * @dev Checks if a given node is a leaf * @param node A node to check */ function isLeaf(Node memory node) internal pure returns (bool) { return (node.left == 0) && (node.right == 0); } /** * @dev Starting from a given node, recursively solve for the boolean value it evaluates to * @param id The id of the node to evaluate * @param node A node to evaluate * @param user Address of a user to evaluate the auth condition against */ function evaluate(bytes32 id, Node memory node, address user) internal view returns (bool) { if (isLeaf(node)) { if (node.value == address(0)) return true; return IAuthorization(node.value).auth(id, user); } else { if (node.op == Operators.NOT) { return !evaluate(id, nodes[node.left - 1], user); } else { bool left = evaluate(id, nodes[node.left - 1], user); bool right = evaluate(id, nodes[node.right - 1], user); if (node.op == Operators.AND) { return left && right; } else if (node.op == Operators.OR) { return left || right; } } } return false; } /** * @dev Given an int array representing a Postfix formed auth condition, construct the expression tree in storage * @param id The id of the node to construct the expression tree for * @param expression A uint array describing the expression where 0,1,2 represent the enum values and index of auth contract is index + 3 * @param authContracts An array of IAuthorization contract addresses. Must have auth(address user) method */ function construct(bytes32 id, uint256[] memory expression, address[] memory authContracts) internal { uint256[] memory stack = new uint256[](expression.length); uint256 stackSize = 0; for (uint256 i = 0; i < expression.length; i++) { uint256 token = expression[i]; Node memory newNode = Node(Operators.NOT, address(0), 0, 0); if (isOperator(token)) { newNode.op = Operators(token); if (Operators(token) == Operators.NOT) { uint256 A = stack[stackSize - 1]; stackSize--; newNode.left = A + 1; } else { uint256 A = stack[stackSize - 1]; uint256 B = stack[stackSize - 2]; stackSize -= 2; newNode.left = A + 1; newNode.right = B + 1; } } else { // Not operand but index of contract uint256 index = token - 3; // Account for 0,1,2 being used for NOT, AND, OR newNode.value = authContracts[index]; } nodes.push(newNode); stack[stackSize] = nodes.length - 1; stackSize++; } // Add to the root for a given id the last element roots[id] = nodes[nodes.length - 1]; } /** * @dev Returns a uint postfix expression from a string boolean expression * @param expression A string expressing a boolean expression, using !,&,| and uints for auth contract indexes (using their true index i.e 0-2 is ok) */ function construct(string memory expression) internal pure returns (uint256[] memory) { uint256[] memory output = new uint256[](bytes(expression).length); uint256 outputSize = 0; bytes memory operatorStack = new bytes(bytes(expression).length); uint256 stackSize = 0; uint256 expressionLength = bytes(expression).length; for (uint256 i = 0; i < expressionLength; i++) { bytes1 token = bytes(expression)[i]; if (isOperator(token)) { if (token == bytes1(")")) { // When right bracket pop operators off until left bracket while (stackSize > 0) { stackSize--; bytes1 opToken = operatorStack[stackSize]; if (opToken == bytes1("(")) { // End if the left bracket found break; } else { if (opToken == bytes1("!")) { output[outputSize] = uint256(Operators.NOT); outputSize++; } else if (opToken == bytes1("&")) { output[outputSize] = uint256(Operators.AND); outputSize++; } else if (opToken == bytes1("|")) { output[outputSize] = uint256(Operators.OR); outputSize++; } } } } else { operatorStack[stackSize] = token; stackSize++; } } else { bytes memory numberBytes = new bytes(expressionLength); numberBytes[0] = token; uint256 index = 1; while (((i + index) < expressionLength) && (!isOperator(bytes(expression)[i + index]))) { numberBytes[index] = bytes(expression)[i + index]; index++; } uint256 number = bytesToNumber(numberBytes, index); output[outputSize] = number + 3; // Account for 0,1,2 being used for operators outputSize++; // Skip the tokens that were part of the number i = (i + index) - 1; } } // If operators exist still in stack pop them to output while (stackSize > 0) { stackSize--; bytes1 opToken = operatorStack[stackSize]; if (opToken == bytes1("!")) { output[outputSize] = uint256(Operators.NOT); outputSize++; } else if (opToken == bytes1("&")) { output[outputSize] = uint256(Operators.AND); outputSize++; } else if (opToken == bytes1("|")) { output[outputSize] = uint256(Operators.OR); outputSize++; } } uint256[] memory output_ = new uint256[](outputSize); for (uint256 i = 0; i < output_.length; i++) { output_[i] = output[i]; } return output_; } /** * @dev Converts a byte string to a base10 uint * @param numberStr A bytes representing the expression * @param length The length of the bytes that represents the number to be converted */ function bytesToNumber(bytes memory numberStr, uint256 length) internal pure returns (uint256) { uint256 val = 0; for (uint256 i = 0; i < length; i++) { uint256 exp = length - i; bytes1 ival = numberStr[i]; uint8 uval = uint8(ival); uint256 jval = uval - uint256(0x30); val += (uint256(jval) * (10 ** (exp - 1))); } return val; } /** * @dev Checks if the token is an operator * @param token The token to check */ function isOperator(bytes1 token) internal pure returns (bool) { bytes1[5] memory operators = [bytes1("("), bytes1(")"), bytes1("!"), bytes1("&"), bytes1("|")]; for (uint256 i = 0; i < operators.length; i++) { if (token == operators[i]) { return true; } } return false; } /** * @dev Checks if the token is an operator * @param token The token to check */ function isOperator(uint256 token) internal pure returns (bool) { return token <= uint256(Operators.OR); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IAuthorization { function auth(bytes32 id, address user) external view returns (bool isAuthorised); function auth(uint256 id, address user) external view returns (bool isAuthorised); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IContentGraph} from "../IContentGraph.sol"; import {IIdentityRegistry} from "../interfaces/IIdentityRegistry.sol"; /** * @title Node Owners * @author Blockchain Creative Labs */ contract NodeOwners { address contentGraph; address identityRegistry; error NotAuthorized(); constructor(address _graph, address _identity) { contentGraph = _graph; identityRegistry = _identity; } modifier nodeOwner(bytes32 id) { _checkOwner(id); _; } function _checkOwner(bytes32 id) internal view virtual { uint256 token = IContentGraph(contentGraph).getNode(id).token; address owner = IContentGraph(contentGraph).ownerOf(token); address actingAs = IIdentityRegistry(identityRegistry).whoIs(msg.sender); if (actingAs != address(0)) { require(owner == actingAs, "NodeOwners: Caller is not authorized"); } else { revert NotAuthorized(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.0; import "./interfaces/IERC6150.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; interface IContentGraph is IERC6150, IERC721 { event Moved(bytes32 _id, bytes32 indexed _from, bytes32 _to); event AccessAuthUpdate(bytes32 _id, address _auth); event ReferenceAuthUpdate(bytes32 _id, address _auth); event URIUpdate(bytes32 _id, string _uri); enum NodeType { ORG, REFERENCE, ASSET } struct ContentNode { bytes32 id; NodeType nodeType; bytes32 referenceOf; string uri; } struct Node { uint256 token; NodeType nodeType; bytes32 id; bytes32 referenceOf; string uri; address accessAuth; address referenceAuth; } /** * @notice Publishes a new set content node (assets/references) to the passed parent id. * @param parentId The id of an ORG node to publish the set of content nodes. * @param content A list of content. */ function publishBulk(bytes32 parentId, ContentNode[] calldata content) external; /** * @notice Publishes a new asset node at a given parent in addition to setting the uri for the asset node. * @param parentId The id of an ORG node to publish the set of content nodes. * @param content A content node to publish. */ function publish(bytes32 parentId, ContentNode calldata content) external; /** * @notice Creates a node of a given type under the parent node provided. * @param id The id of the node to create, must follow correct form based on type. * @param parentId The id of a admin node to publish the node under * @param nodeType The type of node to create, ADMIN, COLLECTION, or ASSET */ function createNode(bytes32 id, bytes32 parentId, NodeType nodeType) external; /** * @notice Creates a node of a given type under the parent node provided. * @param id The id of the node to create, must follow the correct form based on type. * @param parentId The id of a ORG node to publish the node under * @param nodeType The type of node to create, ORG, REFERENCE, or ASSET * @param referenceOf If the type is of REFERENCE the id of the node that is being referenced */ function createNode(bytes32 id, bytes32 parentId, NodeType nodeType, bytes32 referenceOf) external; /** * @notice Moves a node from current parent to a new parent. * @param id The id of the node to move. * @param newParentId The id of an existing admin node to move the node under. */ function move(bytes32 id, bytes32 newParentId) external; /** * @notice Sets the access auth module for a given node. * @param id The id of the node whose auth modules should be set * @param accessAuth The address to the auth module to be used access of node's content. */ function setAccessAuth(bytes32 id, address accessAuth) external; /** * @notice Sets the reference auth module for a given node. * @param id The id of the node whose auth modules should be set * @param referenceAuth The address to the auth module to be used for referencing a node in collection. */ function setReferenceAuth(bytes32 id, address referenceAuth) external; /** * @notice Sets the uri for a node. * @param id The id of the node. * @param uri The URI to the metadata to set for a node. */ function setURI(bytes32 id, string calldata uri) external; /** * @notice Validates if a given user may access the content at a given node. * @param id The id of the node whose content is being accessed. * @param user The address of the user who wishes to access the content. */ function auth(bytes32 id, address user) external view returns (bool); /** * @notice Validates if a given user may reference a given node in a collection. * @param id The id of the node who is being referenced. * @param user The address of the user who wishes to reference the node. */ function refAuth(bytes32 id, address user) external view returns (bool); /** * @notice retrieve node from node id * @param id The id of the node to retrieve. */ function getNode(bytes32 id) external view returns (Node memory node); /** * @dev retrieve node from token id * @param token The tokenId for the node to retrieve. */ function tokenToNode(uint256 token) external view returns (Node memory node); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IIdentityRegistry { function registerRoot(address root, string memory name) external; function deregisterRoot(address root) external; function registerIdentity( bytes memory signature, address root, address identity, uint256 expirary, uint256 deadline ) external; function deregisterIdentity(bytes memory signature, address root, address identity, uint256 deadline) external; function whoIs(address identity) external view returns (address root); function getSignature(address _root, address _identity) external view returns (bytes memory signature, bytes32 digest, address root, address identity, uint256 expirary); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; // Note: the ERC-165 identifier for this interface is 0x897e2c73. interface IERC6150 { /* is IERC721, IERC165 */ /** * @notice Emitted when `tokenId` token under `parentId` is minted. * @param minter The address of minter * @param to The address received token * @param parentId The id of parent token, if it's zero, it means minted `tokenId` is a root token. * @param tokenId The id of minted token, required to be greater than zero */ event Minted(address indexed minter, address indexed to, uint256 parentId, uint256 tokenId); /** * @notice Get the parent token of `tokenId` token. * @param tokenId The child token * @return parentId The Parent token found */ function parentOf(uint256 tokenId) external view returns (uint256 parentId); /** * @notice Get the children tokens of `tokenId` token. * @param tokenId The parent token * @return childrenIds The array of children tokens */ function childrenOf(uint256 tokenId) external view returns (uint256[] memory childrenIds); /** * @notice Check the `tokenId` token if it is a root token. * @param tokenId The token want to be checked * @return Return `true` if it is a root token; if not, return `false` */ function isRoot(uint256 tokenId) external view returns (bool); /** * @notice Check the `tokenId` token if it is a leaf token. * @param tokenId The token want to be checked * @return Return `true` if it is a leaf token; if not, return `false` */ function isLeaf(uint256 tokenId) external view returns (bool); } // Note: the ERC-165 identifier for this interface is 0xba541a2e. interface IERC6150Enumerable is IERC6150 /* IERC721Enumerable */ { /** * @notice Get total amount of children tokens under `parentId` token. * @dev If `parentId` is zero, it means get total amount of root tokens. * @return The total amount of children tokens under `parentId` token. */ function childrenCountOf(uint256 parentId) external view returns (uint256); /** * @notice Get the token at the specified index of all children tokens under `parentId` token. * @dev If `parentId` is zero, it means get root token. * @return The token ID at `index` of all chlidren tokens under `parentId` token. */ function childOfParentByIndex(uint256 parentId, uint256 index) external view returns (uint256); /** * @notice Get the index position of specified token in the children enumeration under specified parent token. * @dev Throws if the `tokenId` is not found in the children enumeration. * If `parentId` is zero, means get root token index. * @param parentId The parent token * @param tokenId The specified token to be found * @return The index position of `tokenId` found in the children enumeration */ function indexInChildrenEnumeration(uint256 parentId, uint256 tokenId) external view returns (uint256); } // Note: the ERC-165 identifier for this interface is 0x4ac0aa46. interface IERC6150Burnable is IERC6150 { /** * @notice Burn the `tokenId` token. * @dev Throws if `tokenId` is not a leaf token. * Throws if `tokenId` is not a valid NFT. * Throws if `owner` is not the owner of `tokenId` token. * Throws unless `msg.sender` is the current owner, an authorized operator, or the approved address for this token. * @param tokenId The token to be burnt */ function safeBurn(uint256 tokenId) external; /** * @notice Batch burn tokens. * @dev Throws if one of `tokenIds` is not a leaf token. * Throws if one of `tokenIds` is not a valid NFT. * Throws if `owner` is not the owner of all `tokenIds` tokens. * Throws unless `msg.sender` is the current owner, an authorized operator, or the approved address for all `tokenIds`. * @param tokenIds The tokens to be burnt */ function safeBatchBurn(uint256[] memory tokenIds) external; } // Note: the ERC-165 identifier for this interface is 0xfa574808. interface IERC6150ParentTransferable is IERC6150 { /** * @notice Emitted when the parent of `tokenId` token changed. * @param tokenId The token changed * @param oldParentId Previous parent token * @param newParentId New parent token */ event ParentTransferred(uint256 tokenId, uint256 oldParentId, uint256 newParentId); /** * @notice Transfer parentship of `tokenId` token to a new parent token * @param newParentId New parent token id * @param tokenId The token to be changed */ function transferParent(uint256 newParentId, uint256 tokenId) external; /** * @notice Batch transfer parentship of `tokenIds` to a new parent token * @param newParentId New parent token id * @param tokenIds Array of token ids to be changed */ function batchTransferParent(uint256 newParentId, uint256[] memory tokenIds) external; } // Note: the ERC-165 identifier for this interface is 0x1d04f0b3. interface IERC6150AccessControl is IERC6150 { /** * @notice Check the account whether a admin of `tokenId` token. * @dev Each token can be set more than one admin. Admin have permission to do something to the token, like mint child token, * or burn token, or transfer parentship. * @param tokenId The specified token * @param account The account to be checked * @return If the account has admin permission, return true; otherwise, return false. */ function isAdminOf(uint256 tokenId, address account) external view returns (bool); /** * @notice Check whether the specified parent token and account can mint children tokens * @dev If the `parentId` is zero, check whether account can mint root nodes * @param parentId The specified parent token to be checked * @param account The specified account to be checked * @return If the token and account has mint permission, return true; otherwise, return false. */ function canMintChildren(uint256 parentId, address account) external view returns (bool); /** * @notice Check whether the specified token can be burnt by specified account * @param tokenId The specified token to be checked * @param account The specified account to be checked * @return If the tokenId can be burnt by account, return true; otherwise, return false. */ function canBurnTokenByAccount(uint256 tokenId, address account) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"graph","type":"address"},{"internalType":"address","name":"identity","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"id","type":"bytes32"},{"indexed":false,"internalType":"string","name":"expression","type":"string"},{"indexed":false,"internalType":"address[]","name":"authContracts","type":"address[]"}],"name":"AuthorizationSet","type":"event"},{"inputs":[{"internalType":"bytes32","name":"id","type":"bytes32"},{"internalType":"address","name":"user","type":"address"}],"name":"auth","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"getNode","outputs":[{"internalType":"enum Authorizer.Operators","name":"","type":"uint8"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"id","type":"bytes32"}],"name":"getRoot","outputs":[{"internalType":"enum Authorizer.Operators","name":"","type":"uint8"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"id","type":"bytes32"},{"internalType":"string","name":"expression","type":"string"},{"internalType":"address[]","name":"authContracts","type":"address[]"}],"name":"setAuth","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052348015600e575f80fd5b5060405161182c38038061182c833981016040819052602b916074565b5f80546001600160a01b039384166001600160a01b0319918216179091556001805492909316911617905560a0565b80516001600160a01b0381168114606f575f80fd5b919050565b5f80604083850312156084575f80fd5b608b83605a565b9150609760208401605a565b90509250929050565b61177f806100ad5f395ff3fe608060405234801561000f575f80fd5b506004361061004a575f3560e01c806346765d1c1461004e5780634f0f4aa914610063578063516a166a1461008f57806384f94221146100b2575b5f80fd5b61006161005c36600461121c565b6100c5565b005b6100766100713660046112e5565b610195565b6040516100869493929190611310565b60405180910390f35b6100a261009d36600461136c565b610295565b6040519015158152602001610086565b6100766100c03660046112e5565b610319565b846100cf81610352565b5f61010e86868080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061054192505050565b905061014d87828686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250610a6292505050565b7fcb80ef594d4227009c9a66d7c24506feb527c1cf373a6f757cfc6ec11478f7cd878787878760405161018495949392919061139a565b60405180910390a150505050505050565b5f805f805f85116101df5760405162461bcd60e51b815260206004820152600f60248201526e125b9d985b1a59081b9bd919481a59608a1b60448201526064015b60405180910390fd5b5f60026101ed600188611432565b815481106101fd576101fd611445565b5f918252602090912060408051608081019091526003909202018054829060ff16600281111561022f5761022f6112fc565b6002811115610240576102406112fc565b8152815461010090046001600160a01b03166020808301919091526001830154604080840191909152600290930154606092830152835190840151928401519390910151909991985091965090945092505050565b5f8281526003602052604080822081516080810190925280546103109286929091829060ff1660028111156102cc576102cc6112fc565b60028111156102dd576102dd6112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015284610e1b565b90505b92915050565b5f81815260036020526040808220815160808101909252805483928392839283929190829060ff16600281111561022f5761022f6112fc565b5f8054604051632864a37f60e11b8152600481018490526001600160a01b03909116906350c946fe906024015f60405180830381865afa158015610398573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526103bf919081019061153d565b515f80546040516331a9108f60e11b81526004810184905292935090916001600160a01b0390911690636352211e90602401602060405180830381865afa15801561040c573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061043091906115f6565b6001546040516371d0c75360e01b81523360048201529192505f916001600160a01b03909116906371d0c75390602401602060405180830381865afa15801561047b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061049f91906115f6565b90506001600160a01b0381161561052257806001600160a01b0316826001600160a01b03161461051d5760405162461bcd60e51b8152602060048201526024808201527f4e6f64654f776e6572733a2043616c6c6572206973206e6f7420617574686f726044820152631a5e995960e21b60648201526084016101d6565b61053b565b60405163ea8e4eb560e01b815260040160405180910390fd5b50505050565b60605f825167ffffffffffffffff81111561055e5761055e611459565b604051908082528060200260200182016040528015610587578160200160208202803683370190505b5090505f80845167ffffffffffffffff8111156105a6576105a6611459565b6040519080825280601f01601f1916602001820160405280156105d0576020820181803683370190505b5085519091505f90815b818110156108ed575f8882815181106105f5576105f5611445565b01602001516001600160f81b031916905061060f816110dd565b1561075c5760d760f81b6001600160f81b0319821601610721575b831561071c578361063a81611611565b9450505f85858151811061065057610650611445565b01602001516001600160f81b0319169050601b60fb1b810161067257506108da565b60df60f81b6001600160f81b03198216016106b8575f5b88888151811061069b5761069b611445565b6020908102919091010152866106b081611626565b975050610716565b606d60f91b6001600160f81b03198216016106d4576001610689565b602160fa1b6001600160f81b03198216016107165760028888815181106106fd576106fd611445565b60209081029190910101528661071281611626565b9750505b5061062a565b6108da565b8085858151811061073457610734611445565b60200101906001600160f81b03191690815f1a9053508361075481611626565b9450506108da565b5f8367ffffffffffffffff81111561077657610776611459565b6040519080825280601f01601f1916602001820160405280156107a0576020820181803683370190505b50905081815f815181106107b6576107b6611445565b60200101906001600160f81b03191690815f1a90535060015b846107da828661163e565b10801561081657506108148b6107f0838761163e565b8151811061080057610800611445565b01602001516001600160f81b0319166110dd565b155b1561087b578a610826828661163e565b8151811061083657610836611445565b602001015160f81c60f81b82828151811061085357610853611445565b60200101906001600160f81b03191690815f1a9053508061087381611626565b9150506107cf565b5f6108868383611171565b905061089381600361163e565b8a8a815181106108a5576108a5611445565b6020908102919091010152886108ba81611626565b9950600190506108ca838761163e565b6108d49190611432565b94505050505b50806108e581611626565b9150506105da565b505b81156109c657816108ff81611611565b9250505f83838151811061091557610915611445565b01602001516001600160f81b031916905060df60f81b8101610962575f5b86868151811061094557610945611445565b60209081029190910101528461095a81611626565b9550506109c0565b606d60f91b6001600160f81b031982160161097e576001610933565b602160fa1b6001600160f81b03198216016109c05760028686815181106109a7576109a7611445565b6020908102919091010152846109bc81611626565b9550505b506108ef565b5f8467ffffffffffffffff8111156109e0576109e0611459565b604051908082528060200260200182016040528015610a09578160200160208202803683370190505b5090505f5b8151811015610a5657868181518110610a2957610a29611445565b6020026020010151828281518110610a4357610a43611445565b6020908102919091010152600101610a0e565b50979650505050505050565b5f825167ffffffffffffffff811115610a7d57610a7d611459565b604051908082528060200260200182016040528015610aa6578160200160208202803683370190505b5090505f805b8451811015610d73575f858281518110610ac857610ac8611445565b602002602001015190505f60405180608001604052805f6002811115610af057610af06112fc565b81526020015f6001600160a01b031681526020015f81526020015f8152509050610b1b826002101590565b15610c5757816002811115610b3257610b326112fc565b81906002811115610b4557610b456112fc565b90816002811115610b5857610b586112fc565b9052505f826002811115610b6e57610b6e6112fc565b6002811115610b7f57610b7f6112fc565b03610bd0575f85610b91600187611432565b81518110610ba157610ba1611445565b602002602001015190508480610bb690611611565b9550610bc5905081600161163e565b604083015250610c92565b5f85610bdd600187611432565b81518110610bed57610bed611445565b602002602001015190505f86600287610c069190611432565b81518110610c1657610c16611445565b60200260200101519050600286610c2d9190611432565b9550610c3a82600161163e565b6040840152610c4a81600161163e565b606084015250610c929050565b5f610c63600384611432565b9050868181518110610c7757610c77611445565b6020908102919091018101516001600160a01b031690830152505b60028054600181810183555f839052835160039092027f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace0180548594919392849260ff19909216918490811115610ceb57610ceb6112fc565b0217905550602082015181546001600160a01b0390911661010002610100600160a81b0319909116178155604082015160018083019190915560609092015160029182015554610d3b9190611432565b858581518110610d4d57610d4d611445565b602090810291909101015283610d6281611626565b94505060019092019150610aac9050565b5060028054610d8490600190611432565b81548110610d9457610d94611445565b5f9182526020808320888452600391829052604090932091029091018054825491929160ff90911690829060ff19166001836002811115610dd757610dd76112fc565b021790555081548154610100600160a81b031916610100918290046001600160a01b0316909102178155600180830154908201556002918201549101555050505050565b5f610e2583611204565b15610ec05760208301516001600160a01b0316610e44575060016110d6565b60208301516040516328b50b3560e11b8152600481018690526001600160a01b0384811660248301529091169063516a166a90604401602060405180830381865afa158015610e95573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eb99190611651565b90506110d6565b5f83516002811115610ed457610ed46112fc565b03610f3a57610f3284600260018660400151610ef09190611432565b81548110610f0057610f00611445565b5f918252602090912060408051608081019091526003909202018054829060ff1660028111156102cc576102cc6112fc565b1590506110d6565b5f610fd885600260018760400151610f529190611432565b81548110610f6257610f62611445565b5f918252602090912060408051608081019091526003909202018054829060ff166002811115610f9457610f946112fc565b6002811115610fa557610fa56112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015285610e1b565b90505f61107886600260018860600151610ff29190611432565b8154811061100257611002611445565b5f918252602090912060408051608081019091526003909202018054829060ff166002811115611034576110346112fc565b6002811115611045576110456112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015286610e1b565b905060018551600281111561108f5761108f6112fc565b036110a75781801561109e5750805b925050506110d6565b6002855160028111156110bc576110bc6112fc565b036110d157818061109e575091506110d69050565b5050505f5b9392505050565b6040805160a081018252600560fb1b8152602960f81b6020820152602160f81b91810191909152601360f91b6060820152601f60fa1b60808201525f90815b60058110156111685781816005811061113757611137611445565b60200201516001600160f81b031916846001600160f81b03191603611160575060019392505050565b60010161111c565b505f9392505050565b5f80805b838110156111fc575f6111888286611432565b90505f86838151811061119d5761119d611445565b01602001516001600160f81b03198116915060f81c5f6111be603083611432565b90506111cb600185611432565b6111d690600a611750565b6111e0908261175b565b6111ea908761163e565b95505060019093019250611175915050565b509392505050565b5f81604001515f148015610313575050606001511590565b5f805f805f60608688031215611230575f80fd5b85359450602086013567ffffffffffffffff8082111561124e575f80fd5b818801915088601f830112611261575f80fd5b81358181111561126f575f80fd5b896020828501011115611280575f80fd5b60208301965080955050604088013591508082111561129d575f80fd5b818801915088601f8301126112b0575f80fd5b8135818111156112be575f80fd5b8960208260051b85010111156112d2575f80fd5b9699959850939650602001949392505050565b5f602082840312156112f5575f80fd5b5035919050565b634e487b7160e01b5f52602160045260245ffd5b608081016003861061133057634e487b7160e01b5f52602160045260245ffd5b9481526001600160a01b03939093166020840152604083019190915260609091015290565b6001600160a01b0381168114611369575f80fd5b50565b5f806040838503121561137d575f80fd5b82359150602083013561138f81611355565b809150509250929050565b8581525f602060606020840152856060840152858760808501375f60808785018101829052601f19601f89011685018581038201604087015290810186905286919060a0015b868210156114105782356113f381611355565b6001600160a01b03168152918301916001919091019083016113e0565b9a9950505050505050505050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156103135761031361141e565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52604160045260245ffd5b60405160e0810167ffffffffffffffff8111828210171561149057611490611459565b60405290565b8051600381106114a4575f80fd5b919050565b5f82601f8301126114b8575f80fd5b815167ffffffffffffffff808211156114d3576114d3611459565b604051601f8301601f19908116603f011681019082821181831017156114fb576114fb611459565b81604052838152866020858801011115611513575f80fd5b8360208701602083015e5f602085830101528094505050505092915050565b80516114a481611355565b5f6020828403121561154d575f80fd5b815167ffffffffffffffff80821115611564575f80fd5b9083019060e08286031215611577575f80fd5b61157f61146d565b8251815261158f60208401611496565b602082015260408301516040820152606083015160608201526080830151828111156115b9575f80fd5b6115c5878286016114a9565b6080830152506115d760a08401611532565b60a08201526115e860c08401611532565b60c082015295945050505050565b5f60208284031215611606575f80fd5b81516110d681611355565b5f8161161f5761161f61141e565b505f190190565b5f600182016116375761163761141e565b5060010190565b808201808211156103135761031361141e565b5f60208284031215611661575f80fd5b815180151581146110d6575f80fd5b600181815b808511156116aa57815f19048211156116905761169061141e565b8085161561169d57918102915b93841c9390800290611675565b509250929050565b5f826116c057506001610313565b816116cc57505f610313565b81600181146116e257600281146116ec57611708565b6001915050610313565b60ff8411156116fd576116fd61141e565b50506001821b610313565b5060208310610133831016604e8410600b841016171561172b575081810a610313565b6117358383611670565b805f19048211156117485761174861141e565b029392505050565b5f61031083836116b2565b80820281158282048414176103135761031361141e56fea164736f6c6343000819000a000000000000000000000000ef2e371bafae46a116519f18a1cff750570e8842000000000000000000000000ee586a3655eb0d017643551e9849ed828fd7c7fa
Deployed Bytecode
0x608060405234801561000f575f80fd5b506004361061004a575f3560e01c806346765d1c1461004e5780634f0f4aa914610063578063516a166a1461008f57806384f94221146100b2575b5f80fd5b61006161005c36600461121c565b6100c5565b005b6100766100713660046112e5565b610195565b6040516100869493929190611310565b60405180910390f35b6100a261009d36600461136c565b610295565b6040519015158152602001610086565b6100766100c03660046112e5565b610319565b846100cf81610352565b5f61010e86868080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061054192505050565b905061014d87828686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250610a6292505050565b7fcb80ef594d4227009c9a66d7c24506feb527c1cf373a6f757cfc6ec11478f7cd878787878760405161018495949392919061139a565b60405180910390a150505050505050565b5f805f805f85116101df5760405162461bcd60e51b815260206004820152600f60248201526e125b9d985b1a59081b9bd919481a59608a1b60448201526064015b60405180910390fd5b5f60026101ed600188611432565b815481106101fd576101fd611445565b5f918252602090912060408051608081019091526003909202018054829060ff16600281111561022f5761022f6112fc565b6002811115610240576102406112fc565b8152815461010090046001600160a01b03166020808301919091526001830154604080840191909152600290930154606092830152835190840151928401519390910151909991985091965090945092505050565b5f8281526003602052604080822081516080810190925280546103109286929091829060ff1660028111156102cc576102cc6112fc565b60028111156102dd576102dd6112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015284610e1b565b90505b92915050565b5f81815260036020526040808220815160808101909252805483928392839283929190829060ff16600281111561022f5761022f6112fc565b5f8054604051632864a37f60e11b8152600481018490526001600160a01b03909116906350c946fe906024015f60405180830381865afa158015610398573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526103bf919081019061153d565b515f80546040516331a9108f60e11b81526004810184905292935090916001600160a01b0390911690636352211e90602401602060405180830381865afa15801561040c573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061043091906115f6565b6001546040516371d0c75360e01b81523360048201529192505f916001600160a01b03909116906371d0c75390602401602060405180830381865afa15801561047b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061049f91906115f6565b90506001600160a01b0381161561052257806001600160a01b0316826001600160a01b03161461051d5760405162461bcd60e51b8152602060048201526024808201527f4e6f64654f776e6572733a2043616c6c6572206973206e6f7420617574686f726044820152631a5e995960e21b60648201526084016101d6565b61053b565b60405163ea8e4eb560e01b815260040160405180910390fd5b50505050565b60605f825167ffffffffffffffff81111561055e5761055e611459565b604051908082528060200260200182016040528015610587578160200160208202803683370190505b5090505f80845167ffffffffffffffff8111156105a6576105a6611459565b6040519080825280601f01601f1916602001820160405280156105d0576020820181803683370190505b5085519091505f90815b818110156108ed575f8882815181106105f5576105f5611445565b01602001516001600160f81b031916905061060f816110dd565b1561075c5760d760f81b6001600160f81b0319821601610721575b831561071c578361063a81611611565b9450505f85858151811061065057610650611445565b01602001516001600160f81b0319169050601b60fb1b810161067257506108da565b60df60f81b6001600160f81b03198216016106b8575f5b88888151811061069b5761069b611445565b6020908102919091010152866106b081611626565b975050610716565b606d60f91b6001600160f81b03198216016106d4576001610689565b602160fa1b6001600160f81b03198216016107165760028888815181106106fd576106fd611445565b60209081029190910101528661071281611626565b9750505b5061062a565b6108da565b8085858151811061073457610734611445565b60200101906001600160f81b03191690815f1a9053508361075481611626565b9450506108da565b5f8367ffffffffffffffff81111561077657610776611459565b6040519080825280601f01601f1916602001820160405280156107a0576020820181803683370190505b50905081815f815181106107b6576107b6611445565b60200101906001600160f81b03191690815f1a90535060015b846107da828661163e565b10801561081657506108148b6107f0838761163e565b8151811061080057610800611445565b01602001516001600160f81b0319166110dd565b155b1561087b578a610826828661163e565b8151811061083657610836611445565b602001015160f81c60f81b82828151811061085357610853611445565b60200101906001600160f81b03191690815f1a9053508061087381611626565b9150506107cf565b5f6108868383611171565b905061089381600361163e565b8a8a815181106108a5576108a5611445565b6020908102919091010152886108ba81611626565b9950600190506108ca838761163e565b6108d49190611432565b94505050505b50806108e581611626565b9150506105da565b505b81156109c657816108ff81611611565b9250505f83838151811061091557610915611445565b01602001516001600160f81b031916905060df60f81b8101610962575f5b86868151811061094557610945611445565b60209081029190910101528461095a81611626565b9550506109c0565b606d60f91b6001600160f81b031982160161097e576001610933565b602160fa1b6001600160f81b03198216016109c05760028686815181106109a7576109a7611445565b6020908102919091010152846109bc81611626565b9550505b506108ef565b5f8467ffffffffffffffff8111156109e0576109e0611459565b604051908082528060200260200182016040528015610a09578160200160208202803683370190505b5090505f5b8151811015610a5657868181518110610a2957610a29611445565b6020026020010151828281518110610a4357610a43611445565b6020908102919091010152600101610a0e565b50979650505050505050565b5f825167ffffffffffffffff811115610a7d57610a7d611459565b604051908082528060200260200182016040528015610aa6578160200160208202803683370190505b5090505f805b8451811015610d73575f858281518110610ac857610ac8611445565b602002602001015190505f60405180608001604052805f6002811115610af057610af06112fc565b81526020015f6001600160a01b031681526020015f81526020015f8152509050610b1b826002101590565b15610c5757816002811115610b3257610b326112fc565b81906002811115610b4557610b456112fc565b90816002811115610b5857610b586112fc565b9052505f826002811115610b6e57610b6e6112fc565b6002811115610b7f57610b7f6112fc565b03610bd0575f85610b91600187611432565b81518110610ba157610ba1611445565b602002602001015190508480610bb690611611565b9550610bc5905081600161163e565b604083015250610c92565b5f85610bdd600187611432565b81518110610bed57610bed611445565b602002602001015190505f86600287610c069190611432565b81518110610c1657610c16611445565b60200260200101519050600286610c2d9190611432565b9550610c3a82600161163e565b6040840152610c4a81600161163e565b606084015250610c929050565b5f610c63600384611432565b9050868181518110610c7757610c77611445565b6020908102919091018101516001600160a01b031690830152505b60028054600181810183555f839052835160039092027f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace0180548594919392849260ff19909216918490811115610ceb57610ceb6112fc565b0217905550602082015181546001600160a01b0390911661010002610100600160a81b0319909116178155604082015160018083019190915560609092015160029182015554610d3b9190611432565b858581518110610d4d57610d4d611445565b602090810291909101015283610d6281611626565b94505060019092019150610aac9050565b5060028054610d8490600190611432565b81548110610d9457610d94611445565b5f9182526020808320888452600391829052604090932091029091018054825491929160ff90911690829060ff19166001836002811115610dd757610dd76112fc565b021790555081548154610100600160a81b031916610100918290046001600160a01b0316909102178155600180830154908201556002918201549101555050505050565b5f610e2583611204565b15610ec05760208301516001600160a01b0316610e44575060016110d6565b60208301516040516328b50b3560e11b8152600481018690526001600160a01b0384811660248301529091169063516a166a90604401602060405180830381865afa158015610e95573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eb99190611651565b90506110d6565b5f83516002811115610ed457610ed46112fc565b03610f3a57610f3284600260018660400151610ef09190611432565b81548110610f0057610f00611445565b5f918252602090912060408051608081019091526003909202018054829060ff1660028111156102cc576102cc6112fc565b1590506110d6565b5f610fd885600260018760400151610f529190611432565b81548110610f6257610f62611445565b5f918252602090912060408051608081019091526003909202018054829060ff166002811115610f9457610f946112fc565b6002811115610fa557610fa56112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015285610e1b565b90505f61107886600260018860600151610ff29190611432565b8154811061100257611002611445565b5f918252602090912060408051608081019091526003909202018054829060ff166002811115611034576110346112fc565b6002811115611045576110456112fc565b8152815461010090046001600160a01b031660208201526001820154604082015260029091015460609091015286610e1b565b905060018551600281111561108f5761108f6112fc565b036110a75781801561109e5750805b925050506110d6565b6002855160028111156110bc576110bc6112fc565b036110d157818061109e575091506110d69050565b5050505f5b9392505050565b6040805160a081018252600560fb1b8152602960f81b6020820152602160f81b91810191909152601360f91b6060820152601f60fa1b60808201525f90815b60058110156111685781816005811061113757611137611445565b60200201516001600160f81b031916846001600160f81b03191603611160575060019392505050565b60010161111c565b505f9392505050565b5f80805b838110156111fc575f6111888286611432565b90505f86838151811061119d5761119d611445565b01602001516001600160f81b03198116915060f81c5f6111be603083611432565b90506111cb600185611432565b6111d690600a611750565b6111e0908261175b565b6111ea908761163e565b95505060019093019250611175915050565b509392505050565b5f81604001515f148015610313575050606001511590565b5f805f805f60608688031215611230575f80fd5b85359450602086013567ffffffffffffffff8082111561124e575f80fd5b818801915088601f830112611261575f80fd5b81358181111561126f575f80fd5b896020828501011115611280575f80fd5b60208301965080955050604088013591508082111561129d575f80fd5b818801915088601f8301126112b0575f80fd5b8135818111156112be575f80fd5b8960208260051b85010111156112d2575f80fd5b9699959850939650602001949392505050565b5f602082840312156112f5575f80fd5b5035919050565b634e487b7160e01b5f52602160045260245ffd5b608081016003861061133057634e487b7160e01b5f52602160045260245ffd5b9481526001600160a01b03939093166020840152604083019190915260609091015290565b6001600160a01b0381168114611369575f80fd5b50565b5f806040838503121561137d575f80fd5b82359150602083013561138f81611355565b809150509250929050565b8581525f602060606020840152856060840152858760808501375f60808785018101829052601f19601f89011685018581038201604087015290810186905286919060a0015b868210156114105782356113f381611355565b6001600160a01b03168152918301916001919091019083016113e0565b9a9950505050505050505050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156103135761031361141e565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52604160045260245ffd5b60405160e0810167ffffffffffffffff8111828210171561149057611490611459565b60405290565b8051600381106114a4575f80fd5b919050565b5f82601f8301126114b8575f80fd5b815167ffffffffffffffff808211156114d3576114d3611459565b604051601f8301601f19908116603f011681019082821181831017156114fb576114fb611459565b81604052838152866020858801011115611513575f80fd5b8360208701602083015e5f602085830101528094505050505092915050565b80516114a481611355565b5f6020828403121561154d575f80fd5b815167ffffffffffffffff80821115611564575f80fd5b9083019060e08286031215611577575f80fd5b61157f61146d565b8251815261158f60208401611496565b602082015260408301516040820152606083015160608201526080830151828111156115b9575f80fd5b6115c5878286016114a9565b6080830152506115d760a08401611532565b60a08201526115e860c08401611532565b60c082015295945050505050565b5f60208284031215611606575f80fd5b81516110d681611355565b5f8161161f5761161f61141e565b505f190190565b5f600182016116375761163761141e565b5060010190565b808201808211156103135761031361141e565b5f60208284031215611661575f80fd5b815180151581146110d6575f80fd5b600181815b808511156116aa57815f19048211156116905761169061141e565b8085161561169d57918102915b93841c9390800290611675565b509250929050565b5f826116c057506001610313565b816116cc57505f610313565b81600181146116e257600281146116ec57611708565b6001915050610313565b60ff8411156116fd576116fd61141e565b50506001821b610313565b5060208310610133831016604e8410600b841016171561172b575081810a610313565b6117358383611670565b805f19048211156117485761174861141e565b029392505050565b5f61031083836116b2565b80820281158282048414176103135761031361141e56fea164736f6c6343000819000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ef2e371bafae46a116519f18a1cff750570e8842000000000000000000000000ee586a3655eb0d017643551e9849ed828fd7c7fa
-----Decoded View---------------
Arg [0] : graph (address): 0xEF2E371BaFAe46a116519F18A1cfF750570E8842
Arg [1] : identity (address): 0xEe586a3655EB0D017643551e9849ed828Fd7c7FA
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000ef2e371bafae46a116519f18a1cff750570e8842
Arg [1] : 000000000000000000000000ee586a3655eb0d017643551e9849ed828fd7c7fa
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.